| دسته بندی | مکانیک |
| فرمت فایل | zip |
| حجم فایل | 16 کیلو بایت |
| تعداد صفحات فایل | 6 |
فرمت فایل : ورد
قسمتی از محتوی فایل
تعداد صفحات : 6 صفحه
اصول ریخته گری فلزات روش های ریخته گری: فرآیند ریخته گری با تولید قالب آغاز می شود که شکل قالب، قرینه و معکوس قطعه ای است که ما نیاز داریم.
قالب از مواد نسوز مانند ماسه تهیه می شود.
فلز بر روی یک اجاق حرارت داده می شود تا ذوب شود.
سپس فلز مذاب در گودی قالب که شکل قطعه مورد نظر است ریخته می شود.
و تا زمان جامد شدن خنک می گردد.
نهایتا قطعه فلزی شکل گرفته از قالب جدا می شود.
تعداد زیادی از سازه های فلزی که هر روز با آنها سرو کار داریم به روش ریخته گری تولید شده اند.
علل این (گستردگی کاربرد ریخته گری) عبارتند از : 1- به روش ریخته گری می توان قطعاتی را تولید کرد که هندسه بسیار پیچیده ای دارند و یا دارای حفره های درونی می باشند.
2- برای تولید قطعات بسیار کوچک و همچنین قطعات بسیار بزرگ از چندصد گرم تا چندین هزار کیلو گرم می توان از این روش استفاده کرد.
3- این روش از نظر اقتصادی بسیار مقرون به صرفه است .
و هدر رفت کمی دارد.
فلزات اضافی در هر بار ریخته گری دوبار ذوب شده و استفاده می شوند.
4- فلز ریخته گری شده ایزو تروپیک است یعنی در تمام جهات دارای خواص فیزیکی و مکانیکی یکسانی است.
مثال های پرکاربرد: دستگیره های در ، قفل ها ،پوشش یا بدنه موتور ها، پمپ ها و غیره، چرخ بسیاری از اتوموبیل ها.
از روش ریخته گری بطور گسترده ای در صنایع اسباب بازی استفاده می گردد .
به عنوان مثال در تولید قطعات ماشین ها، هواپیما ها و غیره.
جدول 1: خلاصه ای از انواع روش های ریخته گری ، به همراه مزایا و معایب آنها و مثالهایی در این زمینه.
فرآیند مزایا معایب نمونه ها ماسه هزینه پایین، گستره وسیعی از فلزات ،اندازه ها و شکل ها تلرانس زیاد، کیفیت سطح نامطلوب سر سیلندر ها ، بدنه موتور ها قالب پوسته ای دقت بالا، نرخ تولید بیشتر و کیفیت سطح بهتر محدودیت در اندازه قطعات میله های اتصال ، جعبه دنده ها الگوی مصرف شدنی Expendable گستره وسیعی از فلزات ،اندازه ها و شکل ها الگو ها استحکام پایینی دارند سر سیلندر ها، اجزای ترمز قالب گچی اشکال پیچیده ، کیفیت سطح عالی فقط برای فلزات غیر آهنی ،نرخ تولید پایین نمونه های اولیه قطعات مکانیکی قالب سرامیکی اشکال پیچیده ، دقت بالا وکیفیت سطح خوب فقط اندازه های کوچک پروانه ها، تجهیزات قالب هاب تزریق investment اشکال پیچیده و کیفیت سطح عالی قطعات کوچک و گران قیمت جواهرات قالب دائمی کیفیت سطح خوب، نرخ تولید بیشتر وتخلخل کم اشکال ساده، گرانی قالب چرخ دنده های و جعبه دنده ها تحت فشار دقت ابعادی عای ، نرخ تولید بالا گرانی قالب ،قطعات کوچک، فلزات غیر آهنی چرخ های اتوموبیل، بدنه دوربین و چرخ دنده های دقیق گریز از مرکز احجام سیلندری شکل بزرگ، کیفیت خوب محدودیت در شکل ، هزینه بالا لوله ها ، بویلر ها و چرخ طیار ها ریخته گری با ماسه: شکل 1: جریان کاری در یک کارخانه ریخته گری ماسه ای (منبع : www.
p2pay.
org ).
در ریخته گری ماسه ای از ماسه طبیعی یا ماسه ترکیبی( ماسه دریاچه) استفاده میشود، که دارای یک ماده نسوز به نام سیلیکا(sio2) می باشد.
دانه های شن باید بقدر کافی کوچک باشند تا بتوان آن ها را م
| دسته بندی | مکانیک |
| فرمت فایل | zip |
| حجم فایل | 572 کیلو بایت |
| تعداد صفحات فایل | 32 |
فرمت فایل : ورد
قسمتی از محتوی فایل
تعداد صفحات : 32 صفحه
استارت موتورهای جت وتوربینی برای روشن شدن یک موتور توربینی یقینا به یک آغازگر و راه انداز نیاز میباشد همانطور که برای روشن شدن یک موتور پیستونی نیاز است.
ولی بین استارت یک موتور پیستونی و یک موتور توربینی تفاوت زیادی وجود دارد که به تعدادی از آنها اشاره میکنم: یک تفاوت اساسی استارت موتورهای جت با استارت موتورهای پیستونی در این است که در موتورهای پیستونی بیشترین فشار و بار وارد بر روی استارت در لحظات اول است و آن به دلیل این است که در این موتورها کافی است میل لنگ با دور متوسطی بچرخد و پیستون ها بتوانند هوا را به اندازه کمپرس کنند و موتور با قدرت خود به کار ادامه دهد.
و چنانچه استارت در این موتورها خراب شود میتوان آنرا به طرق دیگر روشن کرد .
یعنی استارت در این موتورها ارزش حیاتی پایینی دارد چون میتوان با هل دادن یک ماشین آنرا روشن کرد.
و اما در موتورهای توربینی استارت از اهمیت بسیار بالایی برخوردار میباشد بطوریکه به هیچ وجه نمیتوان این موتورها را بدون داشتن یک استارت بکار گرفت.
نکته ی مهم اینجاست که در موتورهای جت برخلاف موتورهای پیستونی بیشترین فشار و بار بر استارت قبل از قطع جرقه، زمانی است که بار وارد بر کمپرسور افزایش میابد.
تفاوت اساسی دیگر که در ظاهر خود را نشان میدهد مدت زمان استارت خوردن است.
در موتورهای پیستونی مدت زمان استاندارد استارت خوردن حدود 1.
8 ثانیه است و در موتورهای سرحال این مقدار کمتر نیز هست که البته در مورد موتورهای قدیمی بحث نمیکنم.
این درحالی است که مقدار زمان لازم برای استارت خوردن یک موتور توربینی معمولی با قدرت نسبی hp 120 حدود 100 ثانیه است.
البته این زمان در هر موتوری متفاوت است ولی موتور هر چه قدر کوچکتر باشد به زمان کمتری احتیاج دارد و برعکس.
هدف از سیستم استارت شتاب دادن به موتوراست تا لحظه ای که توربین ها بتوانند قدرت کافی برای ادامه ی سیکل کاری موتور را تهیه کنند.
به این نقطه از سرعت توربین ها "سرعت خودکفایی" میگویند.
استارترها انواع مختلفی را دارند ولی همان طور که گفته شد هدف همه ی استارترها یکی است و آن رساندن دور موتور به سرعت خودکفایی و در موتورهای بدون توربین رساندن موتور به نقطه ی خودکفایی است.
تهیه، انتخاب یا استفاده از استارت ها به عواملی بستگی دارد که در زیر به آنها اشاره کردم.
یکی زمان استارت است که در هواپیماهای جنگی بسیار مهم است و حتی پس از رسیدن موتور به دور هرزگرد درجه حرارت گازهای اگزوز بالا میرود ولی پس از اینکه دور به 40% Max رسید درجه حرارت گازهای اگزوز باید پایین بیاید، در غیر اینصورت خلبان باید موتور را خاموش کند تا اشکال آن برطرف گردد.
علت بالا رفتن درجه حرارت اگزوز در حین استارت زدن عدم وجود هوای خنک کننده بخاطر کم بودن دور کمپرسور است.
زمانی که استارت زده میشود شمع ها قبل از ورود سوخت به محفظه ی احتراق شروع به جرقه زدن میکنند.
چون اگر مانند موتورهای پیستونی اول مخلوط هوا و سوخت وارد شود ممکن است به"Hot start" بینجامد.
Hot start استارتی است که در آن حرارت گازهای اگزوز از حد مجاز تجاوز میکند.
چنانچه در زمان استارت زدن موتور روشن نشود، سوخت نسبتا زیادی (در موتورهای بزرگ) وارد مح
| دسته بندی | مکانیک |
| فرمت فایل | zip |
| حجم فایل | 28 کیلو بایت |
| تعداد صفحات فایل | 25 |
فرمت فایل : ورد
قسمتی از محتوی فایل
تعداد صفحات : 25 صفحه
دانشگاه آزاد اسلامی – واحد علوم و تحقیقات دانشکده مهندسی پزشکی سمینار درس فلزات در پزشکی موضوع: آلیاژهای حافظه دار استاد: جناب آقای دکتر نعیمی ارائه دهنده فاطمه پورعظیم بیومتریالها بیومتریال یک ماده مصنوعی است که برای جایگزین سازی یا تعویض بخش از بدن انسان یا موجود زنده یا به منظور کارکردن در تماس نزدیک با بافت زنده استفاده می شود.
بیومتریال باید در بدن خنثی باشد.
بیومتریال ها برای التیام اعضاء و اصلاح کاربری و عمل آنها و همچنین اصلاح ناهنجاریها یا وضعیت غیر طبیعی به کار می رود.
یک نوع تقسیم بندی مواد بر حسب جنس آنها می باشد که به گروههای فلزی، پلیمری، سرامیکی و مواد مرکب (Composites) دسته بندی می شود.
مواد فلزی از نظر اهمیتی که در صنعت دارد به دو گروه فلزات آهنی و آلیاژهای آن و فلزات غیر آهنی و آلیاژهای آن تقسیم می شود.
مواد فلزی عمدتاً هادی (رسانای) خوبی برای حرارت و الکتریسته هستند اغلب فلزات در درجه حرارت های معمولی محیط شکل پذیر بوده و درمقابل واکنشهای شیمیایی پایداری بسیار بالایی ندارد.
فلزات در شرایط معمولی دارای ساختار کریستالی اند.
فلزات به صورت خالص به ندرت به کار می روند واغلب از آلیاژهای آنها در صنعت استفاده می شود.
(1) بیومتریالهای فلزی در کاربردهای ارتوپدی Metallic Biomaterials In Orthopaedic Application اولین فلز به کاررفته دربدن انسان فولاد و انادیم دارشرمن بود که برای ساخت صفحهها و پیچهای شکسته بندی استخوان به کار رفت.
و سپس فولاد ضد زنگ L316 و آلیاژهای کبالت- کروم به کاررفتند زیرا مقاومت خوب خوردگی و عمر خستگی مناسب و همچنین سختی، سفتی و استحکام مورد قبول داشت.
فلزات نباید دارای خاصیت سمی بودن و متاسیون زائی یا سرطان زایی در داخل بدن باشند.
آلیاژهای حافظه دار Shape Memory Alloys حافظه داری یعنی نگاه داشتن یکسری اطلاعات و بازگو کردن این اطلاعات در مواقع ضروری، که این اطلاعات همیشه محفوظ است و از بین نخواهد رفت.
منظور از حافظه داری فلز این است که فلز یک حالتی را حفظ می کند و این حالت را همیشه درخود نگهداری کرده و به همراه دارد و اگر در اثر نیرویی تغییر شکل یابد با دیدن حرارت، دوباره به حالت اولیه باز می گردد، که حرارت رکن اساسی است.
اثر حافظه داری در سال 1938 توسط آلدن گرنینجر و گ.
موردیان در دانشگاه های هاروارد و MIT مشاهده شده و آنها ثابت کردند که با تغییر درجه حرارت، فاز مارتنزیتی در نمونه برنجی، شکل گرفته و یا ناپدید می شود.
فلزات آهن –پلاتین، آهن – نیکل، نیکل- آلومینیوم و فولاد ضد زنگ و نیکل – تیتانیم دارای این اثر هستند.
دانش هوانبردی، مکانیک، الکترونیک، مهندسی پزشکی و مهندسی بیولوژیکی از جمله علوم در ارتباط با این آلیاژها می باشند.
آلیاژهای حافظه دار به صورت یک طرفه Oneway و دو طرفه (Two Way) ساخته می شوند.
در ارتوپدی از فلزات یک طرفه استفاده می شود زیرا برگشت پذیری احتیاج نیست.
به عنوان مثال اگر آلیاژی با طول L0 موجود باشد و با کاهش درجه حرارت، طول آن به L رسانده شود.
با افزایش درجه حرارت آلیاژ به شکل و اندازه اولیه خود (L0) می گردد.
حال اگر با کاهش مجدد درجه حرارت، طول آن تغییر نکند، آن
| دسته بندی | مکانیک |
| فرمت فایل | zip |
| حجم فایل | 26 کیلو بایت |
| تعداد صفحات فایل | 38 |
فرمت فایل : ورد
قسمتی از محتوی فایل
تعداد صفحات : 38 صفحه
آشنایی با پمپ تعریف پمپ: پمپ دستگاهی است که انرژی مکانیکی تولید شده به وسیله یک کنبع خارجی (موتور احتراق یا الکتریکی) را گرفته و به سیالی که از آن عبور می کند انتقال می دهد.
موارد کاربرد پمپ : عموما از پمپها برای انتقال انرژی به سیالات استفاده می شود که در زیر بدان اشاره می شود.
انتقال آب : محل مصرف آب همیشه در محل منبع آن نمی باشد در این صورت لازم است آب به مراکز صنعتی و مسکونی و کشاورزی منتقل شود از این رو برای انتقال آب مورد نیاز از پمپ استفاده می شود .
مثلاً پمپاژ آب از چاههای عمیق و نیمه عمیق – پمپاژ آب از رودخانه ها به اراضی اطراف ئ آبرسانی به مسافتهای دور.
آبیاری اراضی: در سیستمهای آبیاری تحت فشار که می بایست آب در شبکه ای از لوله ها با فشار معین حرکت کرده و به صورت قطرات ریز و یگنواخت در شعاع کناسب در اطراف آبپاشها و یا قطره چکانها ریزش نماید ، لازم است این فشار توسط پمپهای فشار قوی یا منبع هوایی تامین گردد.
زه کشی اراضی: زمینهایی که بر اثر آب اضافی ، کشت و کار در آنها غیر ممکن شده است به روشهای مختلفی زه کشی می شوند .
چنانچه خروج طبیعی آب زه کشی ممکن نباشد با استفاده از پمپ این عمل امکان پذیر می شود.
همچنین در معادن نیز آبهای اضافی به وسیله پمپ تخلیه می شود.
به گردش در آوردن مایعات: به حرکت در آوردن مایعات مختلف در صنایع شیمیایی و تصفیه نفت و همچنین به گردش در آوردن آب به منظور گرم کردن و یا خنک کردن با پمپهای سیر کولاتر امکان پذیر است.
انتقال گازها: برای نقل و انتقال گازها در صنایع مختلف و انتقال گازهای سوختی کسکونی از پمپهای ویژه ای استفاده می شود.
انتقال جامدات: در صنعت برای انتقال مواد جامد می توان آنها را به صورت معلق در آب و با فشار ایجاد شده به وسیلة پمپ منتقل کرد.
ساختمان اصلی پمپ اصولآً پمپها از قطعات اصلی زیر تشکیل شده اند.
پوسته: پوسته یا بدنه در پمپها به اشکال متفاوتی ساخته شده است.
در همة این پمپها نقش اصلی پوسته ایجاد امکان حرکت برای قسمت متحرک پمپ و جمع آوری آب مکیده شده می باشد.
قطعه متحرک: این قطعه در پمپهای مختلف متفاوت است که شامل پیستون ، چرخ دنده، پروانه و اجزایی از قبیل شاتون ، اکسانزیک (بادامک) ، دیافراگم و غیره می باشد.
همچنین قطعه متحرک عامل انتقال و تبدیل انرژی مکانیکی به انرژی جنبشی در سیال در حال حرکت در پمپ است.
دهانه مکش: به منظور ورود سیال به پمپ دهانه ای در نظر گرفته می شود که در پمپهای مختلف محل آن بر روی پوسته متفاوت است.
دهانه مکش محل اتصال لوله مکش محل اتصال لوله مکش به پمپ می باشد.
سوپاپ مکش: هنگام کار لازم است لوله مکش پمپ ، پر از آب باشد و قبل از روشن کردن پمپ می بایست این عمل انجام شود.
در صورتی که لازم باشد متناوباً پمپ روشن و خاموش شود می توان در لوله مکش آن سوپاپ مکش نصب کرد که به صورت شیر یکطرفه از خروج آب در زمان خاموش بودن پمپ جلوگیری کند.
و همواره لوله مکش پر از آب باقی بماند.
در پمپهای پیستونی سوپاپ مکش ، عامل افزایش فشار می باشد.
پ دهانه رانش: خروج آب از پوسته پمپ از محل دهانه رانش صورت می پذیرد که در پمپهای مختلف در محلهای متفاوتی تعبیه شده است.
برای ا
| دسته بندی | مکانیک |
| فرمت فایل | zip |
| حجم فایل | 4578 کیلو بایت |
| تعداد صفحات فایل | 182 |
فرمت فایل : ورد
قسمتی از محتوی فایل
تعداد صفحات : 182 صفحه
فهرست مطالب مقدمه: با توجه به روند رو به رشد صنایع و لزوم استفاده از نیروی برق در کشورهای جهان , کسترش نیروگاهها در دستور کار اجرایی کشورهای مختلف قرار گرفته است و این امر به توسعه و گسترش نیروگاه های و پیشرفت های چشم گیری در زمینه فن آوری نیروگاهی منجر شده است .
از آنجا که مهمترین عامل تولید انرژی الکتریکی تبدیل سوخت های فسیلی و گازی به انرژی الکتریکی میباشد می باشد لذا احتراق در نیروگاه های حرارتی و به همراه آن آلودگی هوا مهمترین مسأله قابل توجه خواهد بود .
توجه خاص به فرآیند احتراق از چند دیدگاه قابل ملاحظه است: بهینه سازی مصرف سوخت و حداکثر استفاده از انرژی سوخت و کاهش هزینه ها .
کاهش آلاینده های زیست محیطی حاصل از احتراق که به صورت محصولات احتراق از دودکش نیروگاه ها خارج می شوند.
لزوم دستیابی به دماهای بالا و پایداری احتراق با توجه به حساسیت شبکه قدرت آشنایی با نیروگاه حرارتی و اجزاء مختلف آن : بویــلر بویلر در نیروگاه وظیفه تامین بخار جهت چرخش توربین را به عهده دارد و در اصل مانند یک دیگ بخارمی باشدبا این تفاوت که در داخل بویلر و در امتداد دیواره های آن لوله های متعددی قرار گرفته اند و آب پس از ورود به بویلر در قسمت بالایی آن وارد محفظه ای به نام درام شده و سپس از آنجا واز سمت پائین بویلر وارد لوله های بویلر (Water Wall )می گرددو در آنجادر اثر حرارتی که ناشی از سوختن مشعلهای داخل بویلر که در سه ردیف و در دو طرف دیواره های بویلر قرار دارند می باشد آب به بخار تبدیل شده و مجدداً وارد درام می گردد و در درام آب و بخار از یکدیگر جدا شده وآب مجدداً وارد لوله های بویلر و بخار وارد لوله های دیگری به نام سوپر هیتر می گردد که کار داغتر کردن بخار و رساندن دمای بخار به 540درجه سانتیگراد را به عهده دارند و سپس بخار داغ پس از رسیدن به دمای 540 درجه سانتیگراد وارد توربین می گردد,بویلر نیروگاه شازند به طور کلی از نوع درام دار و تحت فشار می باشد که قادر است هم با سوخت گاز طبیعی و هم با سوخت مازوت کار کندو بخار با دمای 540 درجه سانتیگراد و فشار 167Bar بویلر را ترک می کند.
درنیروگاه های برق فسیلی و نیز نیروگاه های هسته ای از مولدهای بخار استفاده می شود در مولد های بخار بسیار پیشرفته بخار فوق گرم فشار بالا (mpa5/16 تا mpa 24) تولید می شود و دراین میان مولد های بخار مورد استفاده در راکتورهای آب تحت فشار که در آنها بخار اشباع فشار پایین mpa7 تولید می گردد موردی استثنایی می باشد در همه این موارد از بخار آب بعنوان سیال کاری چرخه رانکین استفاده می شود امروز در جهان مولدهای بخار بزرگترین منبع تأمین انرژی برای نیروگاه ها بشمار می روند .
اجزاء اصلی مولد بخار عبارتند از: 1- دیگ 2- اکونومایزر 3- سوپرهیتر 4- ری هیتر 5- ژنگستروم 6- درام و افزون به اینها مولد بخار دارای دستگاه های کمکی مختلفی مانند مشعلها ، دمنده ها ، دودکش و .
.
.
می باشد .
مولدهای بخار از جهات گوناگون تقسیم بندی می شوند و بعنوان مثال می توان آنها را به انواع صنعتی ، نیروگاهی و از جهت دیگر بعنوان درام دار و بدون درام و .
.
.
تقسیم بندی