فایل ناب

سیستم همکاری در فروش فایل

فایل ناب

سیستم همکاری در فروش فایل

دانلود بررسی احتراق (آتش)

بررسی احتراق (آتش)

تحقیق بررسی احتراق (آتش) در 44 صفحه ورد قابل ویرایش

دانلود بررسی احتراق (آتش)

تحقیق بررسی احتراق (آتش)
پروژه بررسی احتراق (آتش)
مقاله بررسی احتراق (آتش)
دانلود تحقیق بررسی احتراق (آتش)
پروژه
پژوهش
مقاله
جزوه
تحقیق
دانلود پروژه
دانلود پژوهش
دانلود مقاله
دانلود جزوه
دانلود تحقیق
دسته بندی علوم انسانی
فرمت فایل doc
حجم فایل 117 کیلو بایت
تعداد صفحات فایل 44

بررسی احتراق (آتش)


احتراق

احتراق عبارت است از اکسیداسیون سریع مواد، همراه با آزاد شدن سریع انرژی.

یکی از تعاریف اکسیداسیون عبارت است از ترکیب شیمیایی یک ماده با اکسیژن. تعریف دیگر اکسیداسیون چنین است: واکنش شیمیایی که شامل اکسیژن باشد، به طوریکه یک یا تعداد بیشتری از مواد با اکسیژن ترکیب شوند.

افروزش

برای آغاز این فرآیند به یک منبع تولید گرما، مواد سوختی و هوا نیاز است. مواد از نظر قابلیت شعله وری متفاوت اند و خصوصیات فیزیکی و شیمیایی در این موضوع مؤثر است. مثلاً موادی که به شکل ورقه ای هستند، فوم ها و یا یک تکه پارچه خیلی ساده تر از بلوکهای ضخیم مواد جامد آتش می‌گیرند. طبق تعریف، آغاز فرآیند سوختن را افروزش می‌نامند. برای پایین آوردن قابلیت افروزش مواد در مقابل منابع کوچک تولید گرما می‌توان کارهایی انجام داد اما اینها لزوماً بر روی سرعت سوختن این مواد مؤثر نخواهد بود.

آتش (حریق)

ساده ترین تعریف احتراق، چیزی است که به آن آتش اطلاق می‌شود و عبارت است از ترکیب شیمیایی سریع مواد با اکسیژن که هم نور و هم گرما تولید می‌کند. شعله ور شدن (مشتعل شدن) و سوختن همراه با دود (سوختن سطحی) دو نوع احتراق هستند که ممکن است اتفاق بیفتند.

برای انجام شدن عمل احتراق باید یک اکسید کننده موجود باشد. تقریباً همه آتشها با اکسیژن موجود در اتمسفر به عنوان عامل اکسیدکننده انجام می‌گیرد، اما اکسیدکننده های دیگری نیز موجود است.

بیشتر این اکسیدکننده ها زمانی که در معرض حرارت، فشار یا هر دوی آنها قرار می‌گیرند  اکسیژن آزاد می‌کنند. علاوه بر آن اکسیدکننده های دیگری نیز وجود دارد مثل هالوژنها (فلوئور، کلر، برم و ید) که احتراق را تقویت می‌نماید، اما در اینجا فقط احتراق با اکسیژن هوا مورد بحث است.

سوختن و بیشتر انفجارها، نمونه هایی از واکنشهای شیمیایی هستند که از آنها به عنوان آتش (حریق) نام برده می‌شود و در واقع واکنشهای شیمیایی هستند که شامل اکسیداسیون سریع مواد است. با وجود این، سرعت این واکنشها ممکن است صدها یا هزاران مرتبه سریعتر از یک حریق باشد. به عبارت ساده تر، سوختن واکنش اکسیداسیونی است که به طور قابل توجهی سریعتر از حریق است، اما آهسته تر از انفجار است.

مثلث آتش

این تئوری به صورت یک مثلث ارائه گردیده است. به دلیل اینکه سه جزء (وجه) اصلی در آن وجود دارد و مثلث یک شکل بسته است که نمایانگر یک سیستم بسته می‌باشد. قسمتی از تئوری تأکید دارد که برای اینکه یک آتش موجود باشد بسته بودن سیستم الزامی‌است بدین معنی که اگر یکی از سه وجه مثلث در تماس با وجه بعدی نباشد وقوع حریق ممکن نیست. در شکل (1 ـ 1) مثلث آتش نشان داده شده است.




 

 

                              سوخت                      انرژی

                                                                                               

                                                                   اکسیدکننده

شکل ( 1ـ 1) مثلث آتش

یک روش دیگر برای بیان تئوری مثلث آتش این است که بگوییم این سه فاکتور باید همزمان موجود باشد تا آتش وجود داشته باشد، همچنین شکل و مقدار مناسبی هم داشته باشند.

اگرچه اکسیژن هوا متداولترین اکسیدکننده هاست ولی اکسیژن به فرمهای دیگر نیز وجود دارد به علاوه هالوژنها نیز جزء اکسیدکننده ها محسوب می‌شوند. به همین ترتیب،
اگر چه گرما متداولترین فرم انرژی به عنوان منبع اشتعال است ولی باید توجه داشت که فرمهای دیگر انرژی (نورانی، شیمیایی، الکتریکی، مکانیکی و هسته ای) نیز می‌توانند شروع کنندة آتش باشند (در صورت وجود سوخت و اکسیدکننده).

به طور خلاصه، این تئوری می‌گوید؛ اگر سوخت، اکسیدکننده و انرژی به مقدار مناسب و شکل دلخواه به طور همزمان کنار یکدیگر آورده شوند، حریق (آتش) اتفاق خواهد افتاد. در مورد سوخت باید به این نکته توجه داشت که نه تنها سوخت باید موجود باشد، بلکه باید فرم صحیح و مناسبی نیز داشته باشد. در واقع سوخت باید به صورت بخار یا گازی شکل باشد تا سوختن اتفاق بیفتند و نیز سوخت باید به مقدار کافی در دسترس باشد، که در این صورت به آن سوخت قابل اشتعال می‌گویند (سوخت باید در محدودة شعله وری قرار داشته باشد).

محدودة شعله وری

محدودة شعله وری عبارت است از درصد سوخت به صورت گاز یا بخار در هوا، که بین بالاترین و پایین ترین حد شعله وری قرار دارد. بالاترین حد شعله وری ماکزیمم درصد سوخت به صورت گاز بخار در داخل هواست که بیشتر از این درصد، احتراق صورت نمی‌گیرد (در این حالت مخلوط را غنی می‌گویند). حد پایین شعله وری عبارت است از می‌نیمم درصد سوخت به صورت گاز یا بخار در  هوا، به طوریکه پایین تر از این درصد احتراق صورت نمی‌گیرد (در این حالت مخلوط را ضعیف می‌گویند).

درجه حرارت افروزش

انرژی مورد بحث در مثلث آتش به صورت زیر تعریف می‌شود.

مقدار انرژی لازم برای افزایش درجه حرارت سوخت که به درجه حرارت افروزش (اشتعال) برسد. درجه حرارت افروزش عبارت است از می‌نمیمم درجه حرارتی که سوخت می‌تواند داشته باشد قبل از اینکه مشعل شود.

پیشگیری و محافظت در برابر حریق

برای پیشگیری از حریق قبل از هر چیزی باید به این نکته توجه داشت که علت اصلی برای بسیاری از آتش سوزی ها وجود یک منبع کوچک تولید گرماست، بنابراین دور کردن منابع شناخته شده تولید آتش، از مواد قابل احتراق کاری ضروری است. در جاهایی که نمی‌توان چنین کاری را کرد، مانند افتادن ته سیگار نیم سوخته بر روی اثاث داخل ساختمان، مواد موجود باید سریعاً دچار آتش سوزی نشوند و جنس آنها طوری باشد که حتی در صورت دچار شدن به آن، آتش به سرعت گسترش نیابد.

اگر بتوان جلوی افروزش مواد را گرفت هیچ آتش سوزی اتفاق نمی‌افتد. پس یکی از اقدامات اساسی محافظت در مقابل آتش همین مسأله (افروزش مواد) است.

همچنین باید توجه داشت که کار کردن با مواد غیرقابل سوختن در تمام شرایط
امکان پذیر نیست و در عمل موجب محدودیت هایی می‌شود. اغلب کافی است که این مواد غیرقابل اشتعال بوده و یا در صورت مشعل شدن، استعداد آنها برای گسترش آتش محدود باشد. با انجام آزمایشهایی مثل سرعت آزاد شدن حرارت و ... می‌توان این موضوع را مورد بررسی قرار داد.

در ضمن دوده و بخارات سمی‌حاصل از احتراق بااهمیت تر از خود آتش در مسأله محافظت در مقابل آتش به حساب می‌آید. آلودگی اصلی از احتراق عمدتاً ناشی از گاز منواکسیدکربن (CO) است. با وجود این بعضی از مواد پلیمری، مواد سمی‌چون سیانید هیدروژن (HCN) و اسید کلریدریک (HCL) تولید می‌نماید. همچنین در حین احتراق، کندسوزکننده ها (مواد افزودنی برای کاهش خطر آتش سوزی) با عناصر پلیمری ترکیب شده و احتمالاً تولید محصولات سعی می‌نماید. آمار تلفات آتش سوزی ها نشانگر این مطلب است که اکثر تلفات نه بر اثر سوختگی، بلکه ناشی از اثر گازهای سمی‌و ناتوان کنندة حاصل از آتش سوزی بوده است. بنابراین تعیین نوع و مقدار این گازها از اهمیت ویژه ای برخوردار است. وسایلی از مواد مصنوعی و پلیمری زیادی در آنها وجود دارد از این نظر بسیار بااهمیت است.

مقابله با آتش

معمولی ترین روش خاموش کردن آتش، خارج کردن وجه انرژی از مثلث آتش است. بهترین راه آن این است که گرما (انرژی) را، به وسیلة خنک کردن سوخت تا زیر درجه حرارت افروزش با استفاده از آب، از نزدیکی سوخت دور کنیم. راههای دیگری نیز برای خنک کردن آتش وجود دارد. در بعضی از مواقع، آب نمی‌تواند به عنوان یک عامل خاموش کنندة آتش به کار رود، مثل آتش (سیمهای الکتریکی باردار) یا آتشی که شامل موادی باشد که با آب واکنش دهد.

و برای خاموش کردن آتشهایی که شامل پلاستیکها است نیز مورد استفاده قرار می‌گیرد. در بعضی مواقع، گرمای جذب شده توسط پلاستیکها ممکن است باعث شود آنها به صورت مایع جاری درآیند. در این مواقع استفاده از قطره های ریز آب به صورت اسپری سریعاً مایع را سرد می‌کند و آن را به حالت جامد اولیه برمی‌گرداند، همچنین این آب باعث خاموش شدن آتش نیز می‌شود.

دومین روش خاموش کردن آتشها، براساس ضلع اکسیژن مثلث آتش است. کاربرد کف برای آتشهای مایع، یا استفاده از دی اکسیدکربن  برای آتشهای مواد قابل احتراق که از رسیدن اکسیژن اتمسفر به آتش جلوگیری می‌نماید، معمول است. استفاده از آب برای محصورکردن یک مایع درحال سوختن (مایع سوختنی باید غیرقابل حل در آب و وزن مخصوص بیشتری از آب داشته باشد) نیز می‌تواند مانع رسیدن اکسیژن به آتش شود. به طور کلی یک مایع یا جامد را می‌توان به هر طریقی پوشش داد که اکسیژن به آن نرسد. مثلاً انداختن شیء درحال سوختن، در آب و غرق شدن جسم در زیر آب باعث می‌شود سوخت سریعاً سرد شود و اکسیژن نیز به آن نرسد.

شرح دستگاه

دستگاه کالریمتر مخروطی از قسمتهای اصلی زیر تشکیل شده است.

  1. 1.     هیتر (گرم کننده) الکتریکی به شکل مخروط ناقص (منبع انرژی تشعشعی سیستم) و ابزارآلات متصل شده به آن برای کنترل شدت جریان (کنترل درجه حرارت هیتر)
  2. 3.     نگهدارنده تجزیه کننده (آنالیزور) اکسیژن و دیگر گازها
  3. 5.     سیستم اندازه گیری غلظت دود
  4. 6.     رادیومتر حرارتی (دستگاه اندازه گیری شار حرارتی)

2.     سیستم دودکش و کانال خروجی گازها

4.     جرقه زن الکتریکی و تایمر

1 ـ همان طور که اشاره شد هیتر به شکل مخروط ناقص درست شده است و این امر بدان علت است که در تست احتراق مشخص شده است که قابلیت تشعشعی (تابشی) آن در گسترة وسیعی قرار دارد. عامل فعال و گرم کنندة هیتر یک سیم مقاومت الکتریکی است که یک لایه از جسم نسوز (اکسید منیزیم)، آن را پوشانده و در نهایت در یک محافظ آلیاژی. مقاوم در درجه حرارتهای بالا، قرار گرفته است. این مجموعه در قسمت داخلی یک مخروط ناقص دوجدارة فولادی به صورت مارپیچ مطابق شکل (3 ـ 2) قرار گرفته است.

در ولتاژ 240 ولت که جریان الکتریکی مورد نیاز دستگاه است ماکزیمم بار حرارتی هیتر برابر kw5 است که این مقدار توان الکتریکی قادر است انرژی تا حد  را به وجود آورد. انرژی تشعشعی مورد نیاز با یک کنترل کننده الکترونیکی قابل تنظیم است. یک ترموکوپل که در تماس مستقیم با المان حرارتی است متصل به یک کنترل کننده است که این کنترل کننده قادر است درجه حرارت را در محدودة صفر تا   با خطای  یا بهتر در درجه حرارت موردنظر تنظیم نماید.

2 ـ سیستم دودکش و کانال خروجی گازها

ابعاد دودکش و کانال خروجی طوری طراحی شده است که قادر باشد کل گازهای حاصل از احتراق (جریان تا حد35) را به راحتی از محفظه احتراق خارج نماید.

مطابق شکل (3 ـ 3) این سیستم شامل کلاهک دودکش (هود)، کانالهای ارتباطی، فن، حلقه نمونه گیر گاز برای تجزیه کننده اکسیژن و دیگر گازها، صفحه سوراخدار همراه با دریافت کننده های فشار برای اندازه گیری اختلاف فشار گاز در دو طرف این صفحه و ترموکوپل برای تعیین دمای گازهای خروجی است.

همانطور که در شکل مشاهده می‌شود بعد از هود یک صفحه سوراخدار (قطر سوراخ آن mm57 است) قرار دارد که کار ان اختلاط کامل گازهای حاصل از احتراق است. بعد از آن به فاصله 685 میلیمتری از هود یک حلقه نمونه گیر گاز قرار دارد که این حلقه دارای دوازده سوراخ است و این امر بدان علت است که نمونه گاز گرفته شده از نظر ترکیب درصد نشان دهنده ترکیب کل گازهای خروجی حاصل از احتراق باشد. برای تعیین دبی جرمی‌گازهای خروجی مطابق معادله (2 ـ 37) احتیاج به درجه حرارت این گازهاست که برای این منظور از یک ترموکوپل استفاده می‌شود که بعد از فن قرار دارد و موقعیت آن باید طوری باشد که حداقل mm100 قبل از صفحه سوراخدار قرار داشته باشد. بعد از ترموکوپل صفحه سوراخدار برای ایجاد فشار قرار دارد (قطر سوراخ آن mm57 است). فاصله صفحه سوراخدار از فن باید حداقل mm350 باشد.

3 ـ نگهدارنده نمونه و ترازو

نگهدارنده نمونه به شکل مکعب مستطیلی است که وجه بالایی آن کاملاً باز است جنس آن از فولاد ضدزنگ است و در ته آن (بین نمونه مورد آزمایش و نگهدارنده) یک لایه عایق حرارتی از جنس پشم با دانسیته کم(65) قرار داده می‌شود که ضخامت این لایه حداقل باید mm13 باشد و این کار بدین علت است که ترازو از تشعشع انرژی حرارتی محفوظ بماند (نوسانات حرارتی باعث می‌شود که وسیلة توزین دقت کافی را نداشته باشد).

موقعیت نگهدارنده نسبت به مخروط ناقص طوری تنظیم می‌شود که فاصله بین
پایین ترین قسمت مخروط و سطح رویی نمونه
mm25 باشد. همچنین در حین آزمایش سطح زیرین نمونه و جوانب آن به وسیله فویل آلومینیومی‌پوشیده می‌شود. طرز
قرار گرفتن نگهدارنده نمونه در محفظه احتراق در دو حالت افقی و عمودی به ترتیب در شکلهای (3 ـ 5) و (6ـ3) نشان داده شده است.

 

دانلود بررسی احتراق (آتش)

دانلود بررسی آزمایش حرارت

بررسی آزمایش حرارت

تحقیق بررسی آزمایش حرارت در 13 صفحه ورد قابل ویرایش

دانلود بررسی آزمایش حرارت

تحقیق بررسی آزمایش حرارت
پروژه بررسی آزمایش حرارت
مقاله بررسی آزمایش حرارت
دانلود تحقیق بررسی آزمایش حرارت
پروژه
پژوهش
مقاله
جزوه
تحقیق
دانلود پروژه
دانلود پژوهش
دانلود مقاله
دانلود جزوه
دانلود تحقیق
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 28 کیلو بایت
تعداد صفحات فایل 13

بررسی آزمایش حرارت


آزمایشگاه حرارت

-        خطاهایی که در هر آزمایش وارد می شود :

1-              خطای آزمایشگر

2-               خطای وسایل آزمایش

3-              خطای محیط

-        اندازه گیری در آزمایش :

1-              خطای مطلق : تفاوت اندازه واقعی جسم ، اندازه ای که در آزمایش بدست آمده است .

2-              خطای نسبی =

3-              در صد خطای نسبی :  100* خطای نسبی

-        نکاتی که در تهیه یک گزارش برای آزمایش باید رعایت کرد :

1-              موضوع آزمایش

2-              تاریخ

3-              اسامی افرادی که در یک گروه آزمایش انجام می دهند .

4-              نام استاد

5-              شرح آزمایش

6-              نوشتن روابط و فرمولهای مربوطه

7-              رسم جداول و نمودارهای لازم

8-              نتیجه گیری

9-              بدست آوردن خطاها

10-        عوامل موثر در خطا

-        تعیین ظرفیت گرمایی کالری متر (گرماسنج ) ، ارزش آبی گرماسنج A 

-        ظرفیت گرمایی جسم :

مقدار گرمایی که جسم می گیرد تا دمای آن یک درجه سانتی گراد افزایش (کلوین) افزایش یابد J/K

          -ظرفیت گرمایی ویژه جسم :

مقدار گرمایی است که به یکای جرم داده می شود تا دمای آن یک درجه کلوین افزایش یابد J/kg k

m : جرم کالری متر

m1 :جرم آب سرد

m2 : جرم آب گرم

c : آب =  C=4/2j/kg  k




 موضوع تعیین ظرفیت گرمایی کالری متر

شرح آزمایش :

ابتدا مقداری آب درون کالری متر ریخته و ان را وزن می کنیم سپس آن را بدون آب وزن می کنیم و وزن خالص آب را بدست می اوریم دمای آب سرد را اندازه گیری می کنیم .آب را درون بشری تا 60 درجه سانتیگراد حرارت می دهیم سپس مخلوط آب گرم و سرد که قبلاً در کالری متر بود دما را اندازه گیری می کنیم و وزن آن را هم می سنجیم با نوشیتن تمامی اعداد و ارقام در سه مرحله این آزمایش را تکرار می کنیم و در هر بار فرمولهای مربوط را می نویسیم .

مرحله اول :

-        تعیین میزان تغییرات

-        هر پنچ درجه که آب سرد شد طول را اندازه گیری می کنیم .

شرح آزمایش :

ابتدا طول میله مخصوص را اندازه گیری می کنیم سپس آب را تا اندازه جوش گرم می کنیم هنگامیکه بخار آب بهمیله رسید حرارت را قطع می کنیم هنگامیکه افزایش طول متوقف شد طول میله را اندازه گیری می کنیم همراه میزان درجه آب ، به بعد هر 5 درجه که آب سرد شد میله را اندازه گیری کرده و اینکار را تا جایی که طول دیگر تغییر نکند تکرار می کنیم .

میزان خطای ساعت اندازه گیری = 05/0 میلی متر که هر عددی که بدست آمد باید منهای این عدد شود .

مرحله یک :

=20 c        

77 c= /64 - 68 c=/45-63 c=/35-58 c=/26

3 c= /20 - 48 c= / 13 -43 c =/9- 38 c = 0/05


مرحله دوم :

 =34 c

80 c= /65 -75 c=/50 - 70 c=/42 - 65 c= /35 - 60 c= /28

55 c= /22 -50 c=/ 17 - 45 c= /12 - 40 c =/09




نتیجه گیری :

از این آزمایش نتیجه می گیریم که با تغییر میزان دما تا حدی جسم انبساط یافته و بعد از آن دما تغییرطولی مشاهده نمی شود همین طور وقتی جسم سرد شود به همین صورت .

خطا های آزمایش :

عوامل موثر در خطا :

به دلیل عایق نبودن صحیح وسیله آزمایش با محیط خارج دمای محیط هم به اضافه دمای بخار آب روی جسم تغییر حاصل می کند. همچنین صحیح خواندن اندازه و درجه حرارت بخار آب و جسم در جواب تاثیر گذار است .

گرمای نهان تبخیر :

مقدار گرمایی به واحد جرم مایع در نقطه جوش داده می شود تا به بخار آب تبدیل شود . بدون آنکه دمایش تغییر کند .

موضوع : تعیین گرمایی نهان تبخیر


دانلود بررسی آزمایش حرارت

دانلود بررسی الکترواستاتیک و کاربرد آن

بررسی الکترواستاتیک و کاربرد آن

تحقیق بررسی الکترواستاتیک و کاربرد آن در 23 صفحه ورد قابل ویرایش

دانلود بررسی الکترواستاتیک و کاربرد آن

تحقیق بررسی الکترواستاتیک و کاربرد آن 
پروژه بررسی الکترواستاتیک و کاربرد آن 
مقاله بررسی الکترواستاتیک و کاربرد آن 
دانلود تحقیق بررسی الکترواستاتیک و کاربرد آن
پروژه
پژوهش
مقاله
جزوه
تحقیق
دانلود پروژه
دانلود پژوهش
دانلود مقاله
دانلود جزوه
دانلود تحقیق
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 41 کیلو بایت
تعداد صفحات فایل 23

بررسی الکترواستاتیک و کاربرد آن


 

1- تاریخچه

از زمان کشف بارتک قطبی که به دورة یونانیان باستان بر می‌گردد پدیده باردار شدن اجسام فقط جنبه کنجکاوی داشته و کاربرد عملی نداشته مثال باردار کردن میله های کهربا با پوست خرگوش یکی از مثالهایی است که باردار شدن از راه مالش را بیان میکند . پدیده رعد و برق و یا شوکهای ناشی از تماس دست با دستگیره در محلهایی که مفروش میباشد نمونه هایی از پدیده الکتروستاتیک میباشد جالب این است که امروزه به این پدیده در فرآیندهای صنعتی بسیار بزرگی برمیخوریم و البته در بعضی از موارد پیامدهای خطرناک و زیان باری را نیز از این پدیده نظاره گر هستیم. 

ماشین های مولد بارهای الکتریکی از سال 1600 میلادی ساخته شدند و پس از توسعه منجر به ساخت ماشین ویمشرست  wimsherst در سال 1878شدند این ماشینها امروزه هم وجود دارند ولی بصورت پیشرفته تر مثلاً ماشین تولدی ولتاژ بالای فلیسی  ، امروزه در بعضی سیستم های رنگ پاشی و در شتابدهنده ها بکار میرود نمونه دیگر مولدهای ولتاژ تسمه ای هستند که ماشین وندگراف از نمونه آن است.

پیشرفت بزرگ الکتروستاتیک عملی از زمانی شروع شد که کاترل  در سال 1906 ته نشین‌سازهای الکتروستاتیکی را در کارخانه‌های سیمان در آمریکا به کار برد در سال 1923 با نصب چنین دستگاهی روی دودکش یک کارخانه برق با سوخت زغال‌سنگ، از ورودی خاکستر زغال سنگ به داخل هوای محیط جلوگیری شد و بدین ترتیب از آلودگی محیط به میزان قابل ملاحظه‌ای کاسته گردید و در سال 1930 رنگ‌پاشی الکتروستاتیک پای به عرصه ظهور نهاد. [1]

چستر کارلسون  در 22 اکتبر سال 1938اولین فتوکپی به روش الکتروستاتیک را در نیویورک بدست آورد و در سال 1942 امتیازش را دریافت کرد و پنجره نوینی جهت کاربرد علم الکتروستاتیک گشود.

در سال 1976 اولین خط تولید لعاب پودر الکتروستاتیک در سپم فرانسه راه‌اندازی شد و از دهه 1970 به بعد شرکت‌های تولیدی در کشورهای استرالیا، اروپای شرقی ژاپن کانادا زلاندنو و بخصوص آمریکا با مقایسه مجموع هزینه‌های کاربرد لعاب پودر به روش الکتروستاتیک با سایر روشها بهره گیری از پوشش الکتروستاتیکی را انتخاب و این تأسیسات را در خط تولید خود بکار گرفتند . [9]

کاربرد الکتروستاتیک در جداسازی مواد نیز از جله مواردی بود که باعث توجه بیشتر به این علم شد در سال 1914 واتینگتون    از الکتروستاتیک جهت جداسازی مواد و در واقع جهت جداسازی خاکستر از زغال استفاده کرد . و در سال 1976 یک مخترع امریکایی از یک جداساز الکتریکی مالشی در این جهت استفاده کرد . در سال 1984 آلفان یک جداکننده گازی و شارژ سریع را طراحی کرد . و در سال 1993 کاپتا جداسازی الکتروستاتیکی ترکیبات پودری را موردمطالعه قرار داد و دراین جهت قدمهای موثری برداشت . 

به تدریج علم الکتروستاتیک بجای آنکه جنبه تئوری یا کنجکاوی داشته باشد به یک ابزار صنعتی مفید بدل گشت وامروزه حضور گسترده این علم را در فرآیندهای مختلف صنعتی از جمله رنگ پاشی ، چاپ ، فیلترهای الکتروستاتیک و همچنین جداسازی الکتروستاتیکی مواد معدنی شاهد هستیم .

2- مقدمه :

الکتروستاتیک کاربردهای وسیعی در زندگی امروزی پیدا کرده است . چندین فرآیند مهم صنعتی بر دانش الکتروستاتیک بنا شده‌اند که از جمله میتوان رنگ پاشی الکتروستاتیکی ، صنعت زیروگرافی ، الکترو فیلترها و جداسازی الکتروستاتیکی مواد معدنی را نام برد . پدیده های الکتروستاتیکی به دو صورت با انسان مواجه میشوند ممکن است خطرناک و مزاحم جلوه دهند و سبب شوک و آتش سوزی و از کار انداختن بعضی قطعات الکترونیکی شوند ممکن است بسیار مفید و کارساز باشد . مزیت استفاده از الکتروستاتیک در این است که با وجوداستفاده از ولتاژهای بالا جریان الکتریکی بسیار کمیاز منبع ولتاژ کشیده میشود و در نتیجه توان مصرفی معمولاً بسیار اندک و غیر قابل ملاحظه است و این مطلب از نظر صرفه جوئی انرژی حائز اهمیت میباشد . 

در نزد کسانی که با مشکلات ناشی از الکتروستاتیک درگیرند شاید شگفت باشد که موضوع الکتروستاتیک از قوانین کاملاً شناخته شده فیزیک پیروی میکند و آگاهی عملی حتی نسبت به برخی ایده های اساسی آن میتواند در غلبه بر مشکلات و درک پیشامدهای رایجتر الکتروستاتیک کمک کند .

الکتروستاتیک اساساً علم بر هم کنش بارهای الکتریکی است . در اکثر فرآیندهای صنعتی بارهای الکتریکی در حال حرکتند . زیرا یا در داخل فراوردة تولیدی و یا بر روی سطح آن نگه داشته میشوند . بنابراین اندر کنشهای مورد نظر بیشتر در نتیجه توزیع فضایی بارهاست تا حرکت آنها .

بیشتر مشکلات ناشی از الکتروستاتیک در صنعت هنگامیرخ میدهند که الکتریسیته دار شدن ناخواسته و غیرقابل کنترلی رخ داده باشد و معمولاً به خاطر این واقعیت بوده که در یک مرحله فرآیند تولید ، مایع یا جامدی با مواد دیگر تماس پیدا کرده جدا شدن بارهای مثبت و منفی در سطح مشترک مواد به آسانی صورت می‌گیرد. در نتیجه یکی از مواد بار مثبت و دیگری بار منفی پیدا میکند اینکه این فرآیند به یک مشکل چشمگیر منجر شود به این بستگی دارد که بارهای جدا شده پس از جدائی دو جسم با چه سرعت بتواند پراکنده شوند هنگامیکه یکی یا هر دو جسم در حال تماس عایق الکتریکی خوبی باشند بار الکتریکی به آهستگی پراکنده میشود و بارهای ساکن در درون و یا روی عایق انباشته خواهند شد .

صنایعی که برای دسترسی به یک فرآیند خاص به بار الکتریکی وابسته اند به منابع کنترل شده ای از بار ساکن نیاز دارند و معمولاً روشهای تولدی بار از راه تخلیة هاله ای و یا القا را بکار میبرند .

در اکثر فرآیندهای الکتروستاتیکی لازم است بار ذرات و یا بار سطوح باردار به دقت کنترل شود تا از آثار ناشی از نیروهای الکتروستاتیکی حاصل بهره گرفته شود . توانایی اندازه گیری بار ، خواه روی ذرات و یا روی سطوح لایه های نازک واقع باشند، و یا بصورت ابر یونی و یا مه باردار در داخل حجمیپخش شده باشند ، در شناخت و بهینه سازی ساز و کارهای فعال و کمیکردن اثر فرآیندهای الکتروستاتیکی حائز اهمیت بسیار است . 

مخصوصاً درمعرض تخلیه های الکتروستاتیکی هستند.

شایعترین علت ایجاد عیب در وسایل الکترونیکی ، تخلیه الکتریکی است که مستقیماً بین شخص کاربر و سر سیم های آن وسیله رخ میدهد جریان ناشی از جرقه میتواند چنان چگالی جریان بالایی در وسیله بالا تولید کند که مثلاً به تبخیر اتصالات آن انجامد و اتصالهای مربوطه را از کار بیندازد . ولتاژ بالای وابسته به جرقه میتواند سبب شکست الکتریکی لایه نازک اکسید عایق زیر الکترود دریچه (گیت) ماسفتها شود .این اکسیدها معمولاً 100 نانو متر ضخامت دارند و چون قدرت شکست الکتریکی آنها  است ، هنگامیکه ولتاژ دو سرشان از 80 ولت فراتر رود به شکست منجر میشوند کسانی که بدنشان به زمین متصل نشده است ممکن است با راه رفتن روی فرش و یا حتی حرکت به اطراف در حالی که روی یک صندلی با پوشش PVC نشسته اند ، تا چندین هزار ولت بار پیدا کنند .

حفاظت قسمتی از بوردهای الکتریکی را میتوان به میزان محدودی با مدارهای خاصی که به سر سیمهای آنها وصل میشود تأمین کرد. اما این کار به خاطر محدود بودن جا روی تراشه گران تمام میشودودر نهایت کار وسیله را در بسامدهای بالا مختل میکند . در این حالت معمولاً اقدامات حفاظتی با قرار دادن مقاومتهاو خازنهایی در ورودی مدار تحقق پیدا میکند تا انرژی جرقه رامصرف کند و جریان آن راکاهش دهند . با بهبود تکنولوژی پردازش و فراگیر شدن وسایل زیر میکرونی ، حساسیت وسایل به تخلیه های الکتروستاتیکی بیشتر میشود و اقدام جدیدتری را طلب میکند تا وسایل و سیستمهای الکترونیکی ساخته شده در محیطی بکار روند و تعمیر شوند که اساساً عاری از الکتروسیته ساکن باشد .

 

فهرست

 

- تاریخچه ------------------------------------------------------- 1

2- مقدمه --------------------------------------------------------- 5

3- زیانهای ناشی از الکتروستاتیک---------------------------------------- 9

3-1 محیط های غیرقابل اشتغال ----------------------------------------- 9

3-2 میحط های قابل انفجار -------------------------------------------- 13

3-3 پر کردن تانکرها ------------------------------------------------- 15

3-4 شستن نفت کش ها و مخازن سوخت ---------------------------------- 16

3-5 آسیب به قطعات الکترونیکی ---------------------------------------- 18

3-6 خطرات ناشی از حرکت پودرهای عایق --------------------------------- 20

4- اصول باردار کردن ذرات -------------------------------------------- 23

5- کاربردهایی از الکتروستاتیک ------------------------------------------ 37

5-1- زیروگرافی ---------------------------------------------------- 39

5-1-1- قسمتهای مختلف یک دستگاه زیروگرافی----------------------------- 43

5-1-2- مراحل چاپ زیروگرافی ---------------------------------------- 43

5-1- 3- عملکرد قسمتهای مختلف فرآیند زیروگرافی ------------------------- 44

5-2- پوشش های الکتروستاتیک----------------------------------------- 61

5-2-1- فرآیند بستر سیال پودر ----------------------------------------- 61

5-2-2- فرآیند بستر سیال الکتروستاتیک----------------------------------- 62

5-2-3- پوشش پودر بطریقه اسپری الکتروستاتیک----------------------------- 66

6- کاربرد الکتروستاتیک در جداسازی مواد معدنی----------------------------- 83

6-1- ساختمان جدا کننده های الکتروستاتیکی ------------------------------- 83

6-2- مکانیزهام باردار کردن ذرات معدنی در جداکننده ها------------------------ 84

6-3- باردار کردن در اثر تماس و مالش ------------------------------------ 85

6-4- باردار کردن بوسیله تخلیه کرونا (جدا کننده های فشار قوی) ------------------ 91

6-5- باردار کردن توسط اتصال ------------------------------------------ 99

7- اندازه‌گیری بار الکتروستاتیکی -----------------------------------------

7-1- ذرات باردار ---------------------------------------------------

7-2- سطوح باردار --------------------------------------------------

7-3- اندازه‌گیری بار در محیط‌گازی --------------------------------------

7-4- اندازه‌گیری بار در مایع -------------------------------------------

8- مراجع ---------------------------------------------------------

 

دانلود بررسی الکترواستاتیک و کاربرد آن

دانلود بررسی امنیت انرژی

بررسی امنیت انرژی

تحقیق بررسی امنیت انرژی در 15 صفحه ورد قابل ویرایش

دانلود بررسی امنیت انرژی

تحقیق بررسی امنیت انرژی
پروژه بررسی امنیت انرژی
مقاله بررسی امنیت انرژی
دانلود تحقیق بررسی امنیت انرژی
پروژه
پژوهش
مقاله
جزوه
تحقیق
دانلود پروژه
دانلود پژوهش
دانلود مقاله
دانلود جزوه
دانلود تحقیق
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 12 کیلو بایت
تعداد صفحات فایل 15

بررسی امنیت انرژی

 

ژئواستراتژی کنونی در قفقاز جنوبی

مقدمه مترجم  

اهمیت روز افزون منطقه قفقاز جنوبی به ویژه در مناسبات جدید جهانی و صف بندی قدرتهای منطقه ای و بین المللی، پژوهش و تحقیق پیرامون این منطقه، عوامل و پارامترهای موثر در آرایش قوا و اثرگذاری بر مناسبات آن را در دستور کار موسسات پژوهشی و مراکز مطالعات راهبردی قرار داده است.

ویژگی منحصر بفرد ارتباطی این منطقه بین اروپا و آسیای مرکزی به عنوان منبع بزرگ انرژی، رقابت ویژه روسیه و غرب در این منطقه که حیاط خلوت سنتی روسیه محسوب می شود، مناقشات دامنه دار قومی که بستر بسیاری از منازعات در این منطقه است و عواملی از این دست، اهمیت قفقاز جنوبی را در روابط منطقه ای و حتی بین المللی بیش ازگذشته ساخته است.

متنی که برگردان آن پیش روی شماست به قلم یکی از محققین و صاحبنظران برجسته مسائل ژئواستراتژیک جهانی و منطقه ای به رشته تحریر در آمده است.

بدیهی است ترجمه این مقاله به معنی تائید تمام ادعاهای نویسنده نبوده و هدف افزودن منابع اطلاعاتی به حوزه های کارشناسی مربوطه است.

 

 

ژئواستراتژی کنونی در قفقاز جنوبی

در ماههای اخیر روابط روسیه و گرجستان متلاطم شده است .تنش روی داده بین این دو کشور تنها یک نمونه ازصف بندی گسترده استراتژیک بین غرب وروسیه در منطقه قفقاز جنوبی است. در این عرصه، کشورها و سازمانهای مختلف در سطوح منطقه ای و فرامنطقه‌ای، در موضوع امنیت انرژی و ایفای نقش در معادلات قدرت در منطقه درگیر هستند. با در نظر گرفتن این دو عامل تعیین کننده، این سؤال مطرح می شود که موقعیت کنونی منطقه چیست و چه آینده ای برای آن پیش بینی می شود ؟

رویکردهای امنیتی و سیاسی- نظامی بازیگران منطقه ای، در ابعاد مختلف بر این منطقه تاثیر گذار است .این بازیگران شامل گرجستان، ارمنستان و آذربایجان و آتش مناقشات همچنان مشتعل آنان در آبخازیا، اوستیا و قره باغ کوهستانی است .افزون بر آن تاثیر و اعمال نفوذ قدرتهای منطقه ای چون ترکیه و ایران و قدرتهای جهانی مانند ایالات متحده، روسیه و چین، جزئی جدایی ناپذیر از آرایش قدرت در منطقه محسوب می شوند.

علاوه بر کشورها، سازمانهای بین المللی نیز در این بازی بزرگ درگیرند. این سازمانها در سطح منطقه ای عبارتند از سازمان همکاریهای اقتصادی دریای سیاه (B.S.E.C) ، سازمان نیروی دریای سیاه (BLACKSEAFOR)، سازمان نیروی دریای خزر (CASFOR)، سازمان همکاری بین گرجستان، اوکراین، آذربایجان و مولداوی (G.U.A.M)، و سازمان پیمان  امنیت دست جمعی (C.S.T.O) همراه با سازمان کشورهای مستقل مشارک المنافع (C.I.S). در سطح بین المللی سازمان پیمان آتلانتیک شمالی (N.A.T.O) و اتحادیه اروپا از وزن مخصوصی در معادلات قدرت منطقه برخوردار می هستند.

 

امنیت انرژی

امنیت انرژی موضوعی دیگر در شکل دهی ژئواستراتژی قفقاز جنوبی است. امنیت انرژی امروزه در سطح بین المللی از اولویت بالایی برخوردار است و ایالات متحده، اتحادیه اروپا و ناتو توجه خود را به تهدیدات متوجه این امر معطوف داشته اند. مجموع کشورهای اتحادیه اروپا در حال حاضر 50 درصد از انرژی مورد نیاز خود را وارد می کنند ( ایالات متحده 58 درصد از نفت مصرفی خود را وارد می کند ) و تا سال 2030 این رقم بالغ بر 70 درصد خواهد شد. علاوه بر این کشورهای عضو اتحادیه اروپا 25 درصد از انرژی مورد نیاز خود را از روسیه وارد می کنندکه این رقم احتمالا در سال 2030 به 40 درصد خواهد رسید ( 45 درصد دیگر انرژی مورد نیاز اتحادیه اروپا از خاورمیانه تامین می شود). در کنار این وابستگی رو به افزونی ، اکنون به ویژه پس از اعمال فشار روسیه به اوکراین جهت افزایش بهای گاز مصرفی این کشور در اواخر سال 2005، دیگر آشکار شده است که سلاح انرژی به  جزئی اساسی از سیاست خارجی و امنیتی روسیه تبدیل شده است.

رقابت روسیه و آمریکا در قفقاز جنوبی و خزر

اهمیت ژئو استراتژیک قفقاز جنوبی و خزر به عنوان کریدور ارتباطی اروپا به آسیای مرکزی ،به عنوان سرپلی برای کنترل و فشار بر ایران و همچنین به دلیل ذخائر انرژی و مقوله جنگ علیه تروریسم، دلایل اصلی حضور ایالات متحده در منطقه هستند. ایالات متحده با عملیات سنگین نظامی خود در عراق و افغانستان و درپی چرخش ازبکستان به سوی روسیه، متمایل به دستیابی نقاط اصلی قدرت در قفقاز و در راستای حمایت از ژئو استراتژی جهانی خود می باشد .

تحرکات اخیر ایالات متحده ممکن است مبتنی بر اصل تعادل قوا در این منطقه باشد که بعد از فروپاشی اتحاد جماهیر شوروی شکل گرفته است .هم اکنون کاملا مشخص است که ایران و روسیه به عنوان بزرگترین قدرتهای منطقه ای از این امر احساس تهدید می کنند. روسیه، قفقاز جنوبی را حیاط خلوت سنتی خود می داند و توجه روز افزون غرب به این منطقه را زیر نظر دارد. ایالات متحده، آذربایجان را به عنوان مهمترین متحد خود در حوزه دریای خزر برگزیده است و برنامه همکاریهای نظامی با این کشور را طراحی و اجرا می نماید. تحلیل گران نظامی روسیه بر این باورند که این برنامه تداعی کننده برنامه آموزش و تجهیز آمریکا – گرجستان است که از زمان آغاز در سال 2002 گرجستان را برخوردار از ارتشی توانمند، آموزش دیده و مجهز ساخته است.

تحلیل گران روسی از این بیم دارند که به زودی این امر در مورد آذربایجان نیز محقق شود که در اینصورت روسیه از تمام ابزارهای خود جهت نفوذ در آذربایجان محروم خواهد شد.

به نظر می رسد همکاری نظامی آمریکا با کشورهای قفقاز جنوبی و حاشیه دریای خزر به آرامی و بدون مخمصه در حال انجام است. هرچند ایالات متحده در منظر افکار عمومی تظاهر به بی میلی برای حضور نظامی در منطقه می نماید، اما آشکار است که این حضور نظامی در راستای دفاع از منافع این کشور در منطقه و از جمله امنیت انرژی است. علاوه بر پشتیبانی نظامی آمریکا، بودجه دفاعی فزاینده آذربایجان نیز در راستای تقویت قدرت نظامی این کشور است. مسئله ای مطرح شده این است که آیا ایالات متحده قادر به راضی کردن دیگر کشورها از قبیل قزاقستان جهت پیوستن به این پیمان همکاری نظامی خواهد بود؟

دانلود بررسی امنیت انرژی

دانلود بررسی انرژی صوت

بررسی انرژی صوت

تحقیق بررسی انرژی صوت در 55 صفحه ورد قابل ویرایش

دانلود بررسی انرژی صوت

تحقیق بررسی انرژی صوت
پروژه بررسی انرژی صوت
مقاله بررسی انرژی صوت
دانلود تحقیق بررسی انرژی صوت
پروژه
پژوهش
مقاله
جزوه
تحقیق
دانلود پروژه
دانلود پژوهش
دانلود مقاله
دانلود جزوه
دانلود تحقیق
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 47 کیلو بایت
تعداد صفحات فایل 55

بررسی انرژی صوت

 

ماوراء صوت (Ultrasound) 

پرتو X از لحظه کشف به استفاده عملی گذاشته شد, و در طی چند سال اول بهبود در تکنیک و دستگاه به سرعت پیشرفت کرد. برعکس, اولتراسوند در تکامل پزشکیش بطور چشمگیری کند بوده است. تکنولوژی برای ایجاد اولتراسوند و اختصاصات امواج صوتی سالها بود که دانسته شده بود. اولین کوشش مهم برای استفاده عملی در جستجوی ناموفق برای کشتی غرق شده تیتانیک در اقیانوس اطلس شمالی در سال 1912 بکار رفت سایر کوششهای اولیه برای بکارگیری ماوراء صوت در تشخیص پزشکی به همان سرنوشت دچار شد. تکنیکها, بویژه تکنیکهای تصویرسازی, تا پژوهشهای گسترده نظامی در جنگ دوم بطور کافی بسط نداشت. سونار, Sonar (Sound Navigation And Ranging) اولین کاربرد مهم موفق بود. کاربردهای موفق پزشکی به فاصله کوتاهی پس از جنگ, در اواخر دهة 1940 و اوایل دهة 1950 شروع شد و پیشرفت پس از آن تند بود.

اختصاصات صوت

یک موج صوتی از این نظر شبیه پرتو X است که هر دو امواج منتقل کننده انرژی هستند. یک اختلاف مهمتر این است که پرتوهای X به سادگی از خلاء عبور می‌کنند درحالیکه صوت نیاز به محیطی برای انتقال دارد. سرعت صوت بستگی به طبیعت محیط دارد. یک روش مفید برای نمایش ماده (محیط) استفاده از ردیفهای ذرات کروی است, که نماینده اتمها یا ملکولها هستند که  بوسیله  فنرهای  ریزی از هم جدا شده اند (شکل A 1-20). وقتی که اولین ذره جلو رانده می‌شود, فنر اتصالی را حرکت می‌دهد و می فشرد, به این ترتیب نیرویی به ذره مجاور وارد می آورد (شکل 1-20). این ایجاد یک واکنش زنجیره ای می‌کند ولی هر ذره کمی کمتر از همسایه خود حرکت می‌کند. کشش با فشاری که به فنر وارد می‌شود بین دو اولین ذره بیشترین است و  بین  هر  دو  تایی  به طرف   انتهای خط کمتر می‌شود. اگر نیروی راننده جهتش معکوس شود, ذرات نیز جهتشان معکوس می‌گردد. اگر نیرو مانند یک سنجی که به آن ضربه وارد شده است به جلو و عقب نوسان کند, ذرات نیز با نوسان به جلو و عقب پاسخ می دهند. ذرات در شعاع صوتی به همین ترتیب عمل می‌کنند, به این معنی که, آنها به جلو و عقب نوسان می‌کنند, ولی در طول یک مسافت کوتاه فقط چند میکرون در مایع و حتی از آن کمتر در جامد.

اگر چه هر ذره فقط چند میکرون حرکت می‌کند, از شکل 1-20 می توانید ببینید که اثر حرکت آنها از راه همسایگانشان در طول خیلی بیشتری منتقل می‌شود. در همان زمان, یا تقریباً همان زمانی که اولین ذره مسافت a را می پیماید, اثر حرکت به مسافت b منتقل می‌شود. سرعت صوت با سرعتی که نیرو از یک ملکول به دیگری منتقل می‌شود تعیین می‌گردد.

امواج طولی

    ضربانات اولتراسوند در مایع به صورت امواج طولی منتقل می‌شود. اصطلاح «امواج طولی» یعنی اینکه حرکت ذرات محیط به موازات جهت انتشار موج است. ملکولهای مایع هدایت کننده به جلو و عقب حرکت می‌کنند و ایجاد نوارهای انقباض و انبساط (شکل 2-20) می‌کنند. جبهه موج در زمان 1 در شکل 2-20, وقتی طبل لرزنده ماده مجاور را می فشارد آغاز می‌شود. یک نوار انبساط, در زمان 2, وقتی که طبل جهتش معکوس می‌گردد, پیدا می‌شود. هر تکرار این حرکت جلو و عقب را یک سیکل (Cycle) یا دوره تناوب گویند و هر سیکل ایجاد یک موج جدید می‌کند. طول موج عبارت است از فاصله بین دو نوار انقباض, یا دو نوار انبساط, و بوسیلة علامت  نشان داده می‌شود. وقتی که موج صوتی ایجاد شد, حرکت آن در جهت اولیه ادامه می یابد تا اینکه منعکس شود, منکسر شود یا جذب گردد. حرکت طبل لرزان که برحسب زمان رسم شده است, یک منحنی سینوسی را که در طرف چپ شکل 2-20 نشان داده شده است تشکیل می‌دهد. اولتراسوند, برحسب تعریف, فرکانسی بیش از 20000 سیکل بر ثانیه دارد. صوت قابل شنیدن فرکانسی بین 15 و 20000 سیکل بر ثانیه دارد (فرکانس میانگین صدای مرد در حدود 100 سیکل بر ثانیه و از آن زن در حدود 200 سیکل بر ثانیه می‌باشد). شعاع صوتی که در تصویرسازی تشخیصی بکار می رود فرکانسی از 000/000/1 تا 000/000/20 سیکل بر ثانیه دارد. یک سیکل بر ثانیه را یک هرتس (Hertz) گویند. یک میلیون سیکل بر ثانیه یک مگاهرتس (مختصر شده آن (MHz) است. اصطلاح هرتس به افتخار فیزیکدان مشهور آلمانی Heinrich R.Hertz می‌باشد که در سال 1894 وفات یافت.

جذب (Absorption)    

جذب اولتراسوند در مایع نتیجه نیروهای اصطکاکی است که با حرکت ذرات در محیط مقابله می‌کنند. انرژی که از شعاع اولتراسوند گرفته می‌شود تبدیل به حرارت می‌گردد. بطور دقیقتر, جذب یعنی تبدیل اولتراسوند به انرژی حرارتی, و تخفیف (Attenuation) یعنی کاهش کلی پیشرفت, از جمله جذب, پخش, و انعکاس.

مکانیسمهای  درگیر  در  جذب نسبتاً پیچیده اند و توضیحات ما خیلی آسان گیری خواهد بود. سه عامل مقدار جذب را تعیین می‌کنند. (1) فرکانس صوت, (2) ویسکوزیته محیط منتقل کننده, و (3) زمان استراحت (Relaxation) محیط. ما درباره فرکانس در آخر بحث خواهیم کرد زیرا دو عامل دیگر در آن اثر دارند.

اگر ما صوت را تشکیل شده از ذرات مرتعش تصویر کنیم, اهمیت ویسکوزیته آشکار می‌شود. با افزایش ویسکوزیته آزادی ذره کم می‌شود و اصطکاک داخلی افزایش می یابد. این اصطکاک داخلی شعاع را جذب می‌کند یا شدت آن را با تبدیل صوت به گرما می کاهد. در مایعات که ویسکوزیته کمی دارند, جذب خیلی کمی صورت می‌گیرد. در بافتهای نرم ویسکوزیته بیشتر است و جذب متوسط صورت می پذیرد, درحالیکه استخوان جذب زیاد اولتراسوند نشان می‌دهد.

زمان استراحت زمانی است که ملکولها پس از اینکه جابجا شدند به وضعیت اولیه خود برمی گردند. این موضوع به حالت ارتجاعی (Resilience)  ماده اشاره دارد. دو ماده با ویسکوزیته یکسان ممکن است زمانهای استراحت مختلف داشته باشند. زمان استراحت برای هر ماده بخصوص ثابت است.

وقتی یک ملکول با زمان استراحت کوتاه بوسیله یک موج طولی انقباضی فشرده می‌شود, قبل از اینکه موج انقباضی بعدی برسد زمان برای برگشت به حالت استراحت خود دارد. یک ملکول با زمان استراحت طولانی تر, ممکن است قادر نباشد پیش از اینکه موج بعدی برسد, کاملاً به حالت اول برگردد. وقتی این اتفاق افتد, موج انقباضی در یک جهت و ملکول در جهت دیگر حرکت می‌کند. انرژی بیشتری از آنچه که در ابتدا ملکول را حرکت داد لازم است تا جهت ملکول را برگرداند. انرژی اضافی تبدیل به گرما می‌شود.

در بافت نرم رابطه خطی بین جذب اولتراسوند و فرکانس وجود دارد. دو برابر کردن فرکانس تقریباً جذب را دو برابر می‌کند و تقریباً  شدت  شعاع  منتقل شده را نصف می‌کند. آگاهی از جذب باعث گزینش ترانسدوسر درست برای کار ویژه مورد نظر می‌شود. فرکانسهای شایع موجود ترانسدوسر عبارتند از 1, 25/2, 5/3, 5, 7 و MHz 10. یک فرکانس درست توازنی است بین قدرت تحلیل (فرکانس بالاتر) و قابلیت رساندن انرژی به بافت (فرکانس پایین) می‌باشد.

 

 

حالت B  

سونوگرافی  پس  از سالیان دراز با ایجاد حالت B به صورت یک روش تصویرسازی درآمد. روشهای دیگر اطلاعات مفیدی می دادند ولی فقط در قلمرو محدودی مفید بودند. حالت B به شدت نقش اولتراسوند را به عنوان یک وسیله تشخیصی, بویژه در بیماریهای شکمی گسترش داد. حالت B تصویر یک برش بافتی را ایجاد می‌کند. اکوها به صورت نقطه ها, شبیه حالت TM نشان  داده  می شوند,  ولی  برخلاف حالت TM, ترانسدوسر حرکت می‌کند بطوری که شعاع صوتی یک سطح بدن را سیر می نماید. ترانسدوسر را می توان به دسته شمشیر, و شعاع اولتراسونیک را می توان به تیغه آن تشبیه کرد. تیغه وقتی در طول بدن می برد, یک تصویر سهمی (Sagital) می‌دهد, و وقتی از یک طرف به طرف دیگر بدن کشیده می‌شود, یک تصویر عرضی یا مقطعی ایجاد می‌کند. تصاویر, شبیه مقاطعی است که اگر ما می توانستیم ببریم و از روبروی آنها نگاهشان کنیم.

در روشهای اسکن کردن حالت B, ترانسدوسر روی پوست بدن گذاشته می‌شود, روغن معدنی روی پوست برای خارج کردن هوا  و  بوجود  آوردن  یک  جفت  شدن  خوب  بین  ترانسدوسر  و  پـوسـت  بـکار  مـی رود.  ایـن  را  یـک  اسکـن   تمـاسـی 

 (Contact Scanning)گویند. ترانسدوسر می تواند در یک نقطه بماند و به جلو و عقب متمایل شود و ایجاد یک اسکن ساده  قطاعی (Sector)  (شکل A 20-20) کند. ولی  بیشتر, ترانسدوسر در عرض بدن درحالیکه دوران هم می‌کند حرکت می‌کند و ایجاد یک اسکن تماسی مرکب (شکل B 20-20) می‌کند. این حرکت مرکب (Compound) در بدن مورد نیاز است زیرا ساختمانهای تشریحی در بدن زوایای مختلفی دارند که از آنجاها امواج اولتراسوند بازتابیده می شوند. اگر زاویه بین خط عمود بر سطح ترانسدوسر و بر سطح حدفاصلی که تصویر می‌شود بیش از 5 درجه باشد, مقدار اولتراسوند بازتابی به ترانسدوسر کمتر از آن است که بتواند تصویری ایجاد کند. بدین ترتیب, حرکت اسکنی مرکب لازم است که سطح ترانسدوسر را برای زوایای مختلفی که حدفاصلها برای ایجاد تصویر دارند مناسب کند. سوار کردن اکوهایی که بوسیلة اسکن مرکب بدست می آید به یک تصویر معنی دار, نیاز به همزمانی دقیق بین حرکات ترانسدوسر و نمایش تیوب اشعه کاتودیک دارد.

در سوار کردن تصویر, تعیین مکان یک اکو نسبت به دیگری بوسیله یک کامپیوتر کوچک که اطلاعات به آن بوسیله یک بازویی که سه مفصل دارد می رسد انجام می‌گیرد (شکل 21-20). کامپیوتر امتداد خط پایه را با محاسبه درجات سه مفصل حساب می‌کند. ژرفای اکو, مانند حالت A بوسیله وقفه زمانی تعیین می‌شود.

دانلود بررسی انرژی صوت