فایل ناب

سیستم همکاری در فروش فایل

فایل ناب

سیستم همکاری در فروش فایل

دانلود بررسی کاربرد فلز سرب

بررسی کاربرد فلز سرب

مقاله بررسی کاربرد فلز سرب در 17 صفحه ورد قابل ویرایش

دانلود بررسی کاربرد فلز سرب

تحقیق بررسی کاربرد فلز سرب
پروژه بررسی کاربرد فلز سرب
مقاله بررسی کاربرد فلز سرب
دانلود تحقیق بررسی کاربرد فلز سرب
پروژه
پژوهش
مقاله
جزوه
تحقیق
دانلود پروژه
دانلود پژوهش
دانلود مقاله
دانلود جزوه
دانلود تحقیق
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 17 کیلو بایت
تعداد صفحات فایل 17

بررسی کاربرد فلز سرب


سرب در حدود 6 تا 7 هزار سال پیش در مصر و بین النهرین کشف شده است. این فلز در شمار قدیمی ترین فلزهایی است که انسان آن را بکار برده است. به این فلز در زبان انگلیسی Lead در عربی رصاص و در زبان پهلوی سرب گفته می شود. در حدود 4000 سال پیش از میلاد مصری ها و سومری ها از سفید سرب برای آرایش استفاده می کردند. در قرون وسطی از سرب به گستردگی در مصالح ساختمانی استفاده می شده است. در ایران نیز سرب از اواخر هزاره سوم شناخته شده و چون ذوب کربنات های سرب آسان بوده است، معادن کربنات سرب زودتر مورد استفاده قرار گرفته اند.

در حال حاضر مهمترین کاربردهای آن در باطری ها، کابل ها و بلبرینگ ها می باشد. روی در سال 1746 بوسیله شیمیدان آلمانی بنام مارگراف کشف شده است. این فلز برای مدت 2000 سال بعنوان یکی از اجزاء آلیاژ برنج در اروپا و آسیا مصرف می شده است. در حدود 150 سال پیش از میلاد مسیح رومی ها از این فلز و آلیاژهای آن سکه تهیه می کردند. امروزه بیشترین کاربرد روی در صنعت گالوانیزه، ترکیب آلیاژها و الکترونیک است. معمولا سرب و روی با یکدیگر و با فلزاتی چون مس، طلا و نقره همراه می باشند. همچنین کانسارهای سرب و روی با درصدهای متنوعی از این فلزات شناسایی شده اند. (4، ص 5)


2-1 ژئوشیمی و مینرالوژی سرب:

بطور کلی چهار ایزوتوپ پایدار سرب با اعداد جرمی 204،206،207 و 208 وجود دارند که از بین آنها ایزوتوپ 208 با فراوانی 1/52% بیشترین ایزوتوپ سرب است. ایزوتوپ‌های 206،207 و 208 محصولات نهائی متلاشی شدن اورانیوم و توریم می باشند. سرب بطور کلی از لحاظ فراوانی در پوسته زمین در رتبه سی و چهارم قرار دارد، سرب دارای کلارک 3-10*6/1% می باشد، در حال حاضر بطور متوسط حداقل ضریب تجمع سرب برای تشکیل کانسارهای اقتصادی در حدود 2000 می باشد. کلارک سرب از سنگهای باریک به سمت سنگهای اسیدی افزایش می یابد، بطوریکه میزان کلارک در سنگهای اوترابازیک 5-10*1% در سنگهای بازیک 4-10*8% و در سنگهای با منشأ ماگمایی اسیدی 3-10*2% می باشد. (4)

کانی های اصلی سرب و درصد سرب در هر کدام به ترتیب زیر می باشد:

گالن با 6/86% سرب، جیمسونیت با 16/40% سرب، بولانگریت با 42/55% سرب، بورنیت با 6/42% سرب، سروسیت با 6/77% سرب و آنگلزیت با 3/68% سرب.

3-1 ژئوشیمی و مینرالوژی روی:

روی دارای 5 ایزوتوپ پایدار است که اعداد جرمی آن 64، 66، 78، 80 می باشد که در این میان بیشترین ایزوتوپ آن ایزوتوپ 64 با فراوانی 9/48% می باشد. روی از لحاظ فراوانی در رتبه بیست و سوم پوسته زمین قرار دارد. کلارک روی تا حدودی بیشتر از سرب می باشد، میزان کلارک روی 3-10*3/8 و ضریب تجمع آن برای تشکیل کانسارهای اقتصادی 500 می باشد. میزان کلارک روی از سنگهای ماگمائی با منشأ بازی به سمت سنگهای ماگمایی با منشأ اسیدی افزایش پیدا می کند. میزان کلارک در سنگهای اولترابازیک 3-10*3% در سنگهای بازی 3-10*3/1% و در سنگهای اسیدی 3-10*6% می باشد. میزان کلارک در سنگهای اسیدی خیلی نزدیک به میزان کلارک در پوسته است. کانی های اصلی روی و درصد روی هر یک به صورت زیر می باشد:

اسفالریت با 67% روی، ورتزیت با 63% روی، اسمیت زونیت با 52% روی، همی مورفیت با 7/53% روی. (4)

4-1 انواع کانسارهای سرب و روی:

بطور کلی انواع کانسارهای سرب و روی عبارتند از:

3-1) اسکارن

3-2) رگه ای

3-3) استراتاباند

3-4) دگرگونی

1-4-1 کانسارهای اسکارن:

چنانچه در دگرگونی مجاورتی موادی از توده نفوذی به سنگ میزبان افزوده شود، کانسارهای اسکارن پدید می آید. بطور معمول کانی های منطقه اسکارن متنوع و فراوانند. اسمیرنف این کانسارها را با توجه به مبانی مختلف به پنج گروه تقسیم کرده که در این میان به رده بندی بر مبنای ترکیب سنگ های دربرگیرنده توده نفوذی اهمیت بیشتری داده زیرا به اسکارن آهکی، اسکارن منیزیتی و اسکارن سیلیکاته اشاره می کند.

امروزه این کانسارها را که از دیدگاه اقتصادی مورد توجه بسیاری از زمین شناسان قرار دارند بر مبنای نوع غالب و چیره و با ارزش موجود در آنها تقسیم بندی می کنند که در حقیقت دنباله رده بندی این کانسارها بر پایه نوع سنگ در بر گیرنده توده نفوذی است.

اینودیک بورت کانسارهای اسکارن آهکی را به پنج گروه اسکارن های آهن، تنگستن، مس، سرب، روی و قلع تقسیم کرده است. نکته قابل توجه این است که بر عکس کانی های موجود در اسکارن ها که ترکیبی پیچیده و متنوع دارند، کانه ها ، بطور معمول، سولفورها و اکسیدهایی با ترکیب ساده هستند. از مهمترین سولفورهای موجود در اسکارن ها اسفالریت و گالن را می‌توان نام برد. (4، ص 23)

کانسارهای اسکارن بیشتر به شکل ورقه، عدسی و یا رگه وجود دارند و دارای ضخامت چند ده متر و وسعت چندصد متر می باشند. در هر صورت مورفولوژی سولفیدهای سرب و روی بر روی ترکیب اسکارن آهکی تأثیر گذاشته و آنها را بیشتر پیچیده می کند. ماده معدنی در این موارد بیشتر به شکل عدسی، ستونی و یا پاکتی شکل دیده می شود. شکل کانسار چندین صدمتر در طول و در امتداد گسترش پیدا می کند؛ همچنین ضخامت آن نیز 1 تا 10 متر و یا بیشتر می‌تواند وجود داشته باشد.

-3-4-1 تیپ دره می سی سی پی

این کانسارها در حقیقت منابع اصلی سرب و روی دنیا هستند. گسترش آنها بیشتر در اروپا، شمال آمریکا و شمال آفریقا است. نمونه هایی از این کانسارها در دیگر نقاط جهان از آن جمله شمال استرالیا نیز دیده شده است. کانسارهای یاد شده در اروپا در

منطقه آلپ به نام کانسارهای آلپی و در آمریکا در نواحی میانه دره رودخانه می سی سی پی معروف به کانسارهای نوع دره می سی سی پی هستند. این کانسارها بیشتر در رسوب های پالئوزوئیک و مزوزوئیک اختصاص دارند. نوع سنگ میزبان اکثر آنها سنگ های آهکی است.

استانتون (1972) به همین جهت این کانسارها را زیر عنوان همراهی سنگ آهک سرب و روی مورد بررسی قرار داده است. سنگ در برگیرنده کانه ها اکثراً آهک منیزیم دار و دولومیت است. در برخی مناطق کانسار حالت لایه مانند دارد؛ غالباً سولفیدها به صورت رگه ای پر کردن فضاهای خالی را ایجاد کرده و یا بصورت بافت برشی دیده می شوند.

کانی های مشخص این کانسارها عبارتند از: گالن، اسفالریت، باریت و فلوریت به این ترتیب این کانسارها نشانه جدا شدن مقادیر قابل ملاحظه ای از عناصر سرب ، روی، باریم و فلوئور از بخشی از پوسته زمین و تمرکز آنها در بخش دیگر است. از مشخصات اسفالریت این کانسارها رنگ پریدگی و وجود مقدار جزئی آهن و منگنز در ترکیب آن است. استانتون (1972) خاستگاه کانسارهای نوع دره می سی سی پی را به دو گروه تقسیم کرده است.

1- در ارتباط با مراحل رسوبگذاری:

الف ) نتیجه رسوبگذاری از آب دریا:

ب) نتیجه جدا شدن مستقیم از بخارها و گازهای حاصل از فعالیت های توده های نفوذی زیردریایی

ج) نتیجه رسوبگذاری مواد تخریبی

د)‌حرکت مواد موجود در محلول های درون خلل و فرج سنگ ها و رسوبگذاری آنها در شرایط مناسب

هـ) تشکیل رگه ها و جانشینی کانی در مراحل دیاژنز سنگ؛

2- در ارتباط با سیال های وارد شده:

الف ) سیالات با خاستگاه آذرین

ب) سیالات با خاستگاه ژرف

از کانسارهای مهم نوع دره می سی سی پی می توان کانسار سرب و روی سیلیسیای بالایی در کشور لهستان، کانسارهای متعدد آمریکا و تعدادی از کانسارهای سرب و روی ایران از جمله کانسار سرب نخلک را نام برد. (4، ص 26، 27).


2-3-4-1 کانسارهای لایه ای شکل:

کانسارهای سرب و روی لایه ای شکل در مناطق زیر شناسایی شده اند. اتحادجماهیر شوروی، آسیای مرکزی، در نواحی لهستان، بلغارستان، یوگسلاوی، استرالیا، فرانسه، ایتالیا، اسپانیا، ایران، الجزیره، تونس، آمریکا و کانادا.

این کانسارها از سنگهای کربناته بسیار ضخیم تشکیل شده اند که سن آنها پالئوزوئیک و به طور کمتر مزوزوئیک می باشد. ساختارها و تشکیلات این کربنات ها ده ها و صدها کیلومتر وسعت دارد و در پلاتفرم رسوبی و قدیمی اپی هر سینین واقع شده است که روی تشکیلات ژئوسینکلینال را می پوشاند.

ماده معدنی در بیشتر مواقع شبیه صفحات هماهنگ و یک ساختار عدسی شکل می باشد که در دو مرحله شکل گرفته است. بندرت ماده معدنی دارای ساختار رگه ای و یا لوله ای می باشد. ماده معدنی دارای وسعت قابل ملاحظه ای در جهت امتداد از چند صد متر تا چند کیلومتر می باشد، همچنین در جهت شیب نیز دارای طول 800 تا 1000 متر می‌باشد. ضخامت آن نیز دارای رنج متغیر و از 5 تا 200 متر و بطور میانگین 10 تا 20 متر می باشد.

ماده معدنی در ساختار خود دارای عناصر سرب و روی و یا فقط سرب یا روی به طور مجزا می باشد. کانی های اصلی نیز با اسفالریت، گالن و در بعضی مواقع پیریت مشخص می گردد. کانی های گانگ شامل: کلسیت، دولومیت و بندرت باریت می باشد. مارکاسیت، کالکوپیریت و بورنیت کانی های فرعی محسوب می گردند. همچنین کوارتز و فلوریت کانی های فرعی گانگ به حساب می آید.

در مورد پیدایش کانسارهای لایه ای سرب و روی تردید و اختلاف نظر وجود دارد تعدادی از دانشمندان معتقدند که این کانسارها دارای منشأ اپی ژنتیک می باشد در حالیکه گروه دیگر معتقدند که این کانسارها در رسوبات سن ژنتیک پیدایش و تکوین شده اند.

دانلود بررسی کاربرد فلز سرب

دانلود بررسی کاربرد مبردها

بررسی کاربرد مبردها

مقاله بررسی کاربرد مبردها در 16 صفحه ورد قابل ویرایش

دانلود بررسی کاربرد مبردها

تحقیق بررسی کاربرد مبردها
پروژه بررسی کاربرد مبردها
مقاله بررسی کاربرد مبردها
دانلود تحقیق بررسی کاربرد مبردها
پروژه
پژوهش
مقاله
جزوه
تحقیق
دانلود پروژه
دانلود پژوهش
دانلود مقاله
دانلود جزوه
دانلود تحقیق
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 19 کیلو بایت
تعداد صفحات فایل 16

بررسی کاربرد مبردها


-   مقدمه  Introduction

با توجه به آنچه که در گزارش اول ، اسفند 1381 ( بررسی و چگونگی تعویض مبرد R-22 در چیلرهای مجتمع پتروشیمی اصفهان) به آن اشاره شد و پروژه‏های انجام شده در خصوص‏تعویضCFC ها در این مجتمع، PROPOSAL حذف برای مبردهای R-11 ، R-13 ، R-502 و R-12 صادر شده است و در طی سال گذشته و جاری دستگاههای سبک مجتمـع که با R-12 کار می‏کردند ، در زمـان تعمیرات و در واحد تهویه گاز آنها با مبرد R-134a با موفقیت تعویض شد که در این زمینه می‏توان به دو دستگاه آبسرد کن و دو دستگاه فریزر اشاره نمود.

واحد تهویه امیدوار است بتواند با انجام پروژه تعویض HCFC  R-22 که برای اولین بار در کشور در این مجتمع انجام میگیرد ، رسالت خود را در خصوص تعهدات زیست محیطی و پروتکل مونترال تکمیل نموده و بدین ترتیب در کارنامة خود در خصوص RETROFIT تجربه جدید ( تعویض HCFC ها ) را به دستاوردهای خود اضافه نماید.

البته با توجه به تماس‏ها و مکاتباتی که از طریق اینترنت بعمل آمده است، از مبرد R-507 بجای فرئون R-22 فقط در دستگاههای سرد کننده‏ای که دمای آنها زیر صفر است (LOW AND MEDIUM TEMPERATURE) استفاده میشود و این مسئله هم اخیراً و آنهم بصورت یک پروژة تحقیقاتی که از طرف ASHRAE هزینه شده است ، عنوان گردیده و در واقع استفاده از R-507 بجای R-22 در سیستمهای سرد کننده با دمای بالای صفر (HIGH TEMPERATURE) و آنهم به کمک BRINE ( ضد یخ – اتیلن گلایکول ) برای اولین بار در این مجتمع صورت میگیرد که در صورت موفقیت علاوه بر تعویض HCFC ، مسئله بهینه‏سازی در مصرف انرژی نیز مدنظر قرار خواهد گرفت.

نکته : استفاده از گلایکول اتیلن و پائین آوردن دمای آب چیلر از 8°C   به 1°C ، از سیستم میتوان بعنوان ICE CHILLER STORAGE بهره برد.  ( باید در نظر داشت که مکانیزمها و سیستمهای بکار برده شده از نظر دما و فشار محدودیتی نداشته باشند )

استفاده از دستگاههای ICE STORAGE در طراحیهای جدید و آتی با دمای (1°C) 36°F علاوه بر بهینه کردن مصرف انرژی ، هزینه‏های لوله‏کشی ، داکت و کانال کشی ، پمپها و وسایل برقی را بدلیل کوچک شدن سایزشان کاهش داد.

2-     مبردها Refrigerants

مبرد ماده‏ایست که با جذب حرارت از یک ماده و یا یک محیط و انتقال آن به محیط دیگر بصورت عامل خنک کننده عمل می‏کند.  در یک سیکل تراکمی تبخیری ، ماده مبرد با تبخیر و تقطیر تناوبی ، به ترتیب حرارت را در اواپریتور جذب و در کاندنسر دفع مینماید.

مبرد میبایستی دارای خواص شیمیائی ، فیزیکی و ترمودینامیکی ویژه‏ای باشد که استفاده از آن مطمئن و از نظر اقتصادی به صرفه باشد.

البته مبردی وجود ندارد که برای همه کاربردها مناسب باشد ، بهمین دلیل میبایستی در انتخاب یک مبرد شرایطی را در نظر گرفت که بتواند نیازهای یک کاربرد بخصوص را تأمین نماید.

3-    مبردهای جایگزین و معیارهای انتخاب

Retrofit Refrigerants & The Guide Lines Of Choise


با شرایط خاصی که در سالهای اخیر برای کرة زمین ایجاد شده است ومسئله صدمه دیدن لایة اوزن ، سازمانهای بین‏المللی استفاده از HCFC ها را نیز همانند CFCها محدود و برای حذف (PHASE OUT) کردن آنها برنامه زمان بندی شده‏ای را در نظر گرفته‏اند و شرکتهای تولید کنندة اینگونه مواد سعی بر این دارند که جایگزینهای مناسبی را تولید و در دسترس مشتریها و مصرف کننده‏ها قرار دهند.

البته همانگونه که در گزارش اول به آن اشاره شده است واحد تهویه در نظر دارد که مسئله بهینه سازی انرژی را در زمان تعویض و انتخاب مبرد جایگزین ، مد نظر قرار داده تا بدین ترتیب در کاهش مصرف سوختهای فسیلی قدم مؤثری برداشته باشد.   در نتیجه نسبت به تعویضهای گذشته میتوان اصل ششم یعنی ارزیابی انرژی مصرفی را به پنج اصل گذشته اضافه نمود.

الف ) عملکرد  Performance

ب)    ایمنی Safety

ج)    اطمینان Reliability

د)    ملاحظات زیست محیطی Environmental Consideration

هـ)  ملاحظات اقتصادی Economic Consideration

و)    مصرف انرژی Power Consumption

3-1-  عملکرد Performance


7-  محاسبات سیستم سرد کننده ساختمان سایت آفیس در شرایط موجود با گاز R-22

7-1- محاسبات ترمودینامیکی سیکل با مبرد R-22 ( سیکل ایده‏آل)

سیکل مبرد R-22 را میتوان در نمودار فشار – انتالپی (p-h) مطابق شکل زیر نمایش داد.  سیکل ، ایده‏آل بوده و راندمان کمپرسور و افت فشار در لوله‏ها در نظر گرفته نشده است.  مقادیر فشار و دما در نقاط مختلف سیکل براساس استاندارد تبرید تراکمی صورت میگیرد. (مخصوص چیلرها)

فرآیندهای مختلف در این سیکل عبارتند از :

فرآیند 1-2 : تراکم بخار مبرد در کمپرسور که در شرایط ایده‏آل و بصورت آیزونتروپیک است.

فرآیند 2-3 : کاهش دمای مبرد در تحول فشار ثابت ( در لوله دیسچارج و کاندنسر)

فرآیند 3-4 : تقطیر یا کاندنس کامل مبرد در یک تحول فشار و دما ثابت

فرآیند 4-5 : تحـول خفقان یا انتالپی ثابت که در وسیله انبساطی صورت می‏گیـرد (اکسپنشن ولو )

فرآیند 5-6 : تحول تبخیر در اواپریتور (CHILLER) که بصورت دما و فشار ثابت انجام می‏گیرد.

فرآیند 6-1 : ناحیه‏سوپرهیت است که در واقع‏برای‏جلوگیری از صدمه‏رسیدن به کمپرسور ، بخار اشباع در اواپریتور را قبل از ورود به کمپرسور کمی گرم می‏کنند تا بصورت بخار داغ (SUPERHEAT) وارد کمپرسور شود.

در محاسبة سیکل تبرید مورد نظر با مبرد R-22 و بصورت ایده‏آل از داده‏های موجود در مرکز اسناد و کاتالوگ شرکت سازنده چیلر (CLIMAVENTA) استفاده شده است.   البته لازم به ذکر است که بار حرارتی کاندنسر در محاسبات انجام شده براساس اختلاف دمای 6 درجه (INLET 29°C , OUTLET 35°C) صورت گرفته است درصورتیکه طبق LOG SHEETهای پیوست اختلاف دمای آب ورودی و خروجی کاندنسر چیزی در حدود 10 درجه است که این مسئله باعث افزایش ظرفیت کاندنسر خواهد شد.  ( مشخصات فنی و داده‏های سیستم در پایان گزارش پیوست میباشد )

7-2- جزئیات محاسبات سیکل تبرید R-22 ( سیکل واقعی )

از آنجائی که جریان سیال در دو مبدل کاندنسر و اواپریتور دو فازی  ( اشباع SATURATION ) میباشد ، افت فشار ناچیزی ایجاد می شود که تأثیر آن در محاسبات قابل اغماض و ناچیز است.  همچنین افت فشار لوله‏های رابط نیز در موازنة حرارتی سیکل قابل چشم‏پوشی است.

و تنها عامل مهم در محاسبات سیکل بصورت واقعی ، راندمان ((ηC   کمپرسور است.، که میبایستی در نظر گرفته شود.

البته راندمان کمپرسورهای سیلندر پیستونی فرئونی که توسط خود شرکتهای سازنده ارائه میگردد ، چیزی در حدود 70 تا 80 درصد است.  لذا به منظور دقت در محاسبات و آنهم برای تعویض R-507 مقدار راندمان 75 درصد در نظر گرفته شده است.

راندمان یک کمپرسور سیلندر پیستونی رابطة مستقیمی با نسبت تراکم آن دارد.

البته با توجه به تمامی LOG SHEET های پیوست در این گزارش که توسط افراد گروه تهویه و در تابستان سال جاری و در شرایط مختلف تکمیل شده است راندمان کمپرسور چیلر مورد نظر بالای 75 درصد است.

8-   محاسبات سیستم سردکنندة ساختمان سایت آفیس با R-507

8-1-                     محاسبات ترمودینامیکی سیکل با مبرد R-507 ( سیکل ایده‏آل )

براساس گزارشات و مقالاتی که از طریق اینترنت دریافت شده است ، درصورت جایگزین کردن R-507 ، فشار دیسچارج کمپرسور در حدود (3.4 BARG ) +50 PSIG نسبت به R-22 افزایش خواهد داشت و بر عکس دمای دیسچارج کمتر خواهد شد.

لذا محاسبات ترمودینامیکـی سیکل با مبرد R-507 براساس داده‏های شرکت سازنده چیلر ( دمای اواپریتور 0°C و 10°C سوپر هیت گاز ورودی کمپرسور ) و با لحاظ کردن افزایش +50 PSIG به فشار خروجی کمپرسور انجام گرفته است.

دانلود بررسی کاربرد مبردها

دانلود بررسی متالورژی پودر

بررسی متالورژی پودر

مقاله بررسی متالورژی پودر در 48 صفحه ورد قابل ویرایش

دانلود بررسی متالورژی پودر

تحقیق بررسی متالورژی پودر
پروژه بررسی متالورژی پودر
مقاله بررسی متالورژی پودر
دانلود تحقیق بررسی متالورژی پودر
پروژه
پژوهش
مقاله
جزوه
تحقیق
دانلود پروژه
دانلود پژوهش
دانلود مقاله
دانلود جزوه
دانلود تحقیق
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 41 کیلو بایت
تعداد صفحات فایل 48

بررسی متالورژی پودر



پیشگفتار:

یکی از شاخه‌های علم متالورژی که دز سالهای اخیر رشد زیادی یافته است. متالورژی پودر است. البته قدمت تولید قطعات با پودر به پنج هزار سال و بیشتر  می رسد. یکی دیگر از دلایل توسعه متالورژی پودر این است که در روش مزبور فلز تلف  شده به مراتب کمتر از  سایر روشهاست و حتی می توان گفت وجود ندارد. سرمایه گذاری در صنعت متتالورژی پودر نیز،‌کمتر از سرمایه گذاری برای  روشهای کلاسیک ساخت قطعات  است. زیرا در مرحله هم جوشی ،  درجه حرارت لازم کمتر از درجه حرارت ذوب فلزات است و در نتیجه، کوده های مورد احتیاح ارزانتر اند.

دامنه استفاده از متالورژی پودر بسیار متنوع و گسترده بوده و در این رابطه کافی است به زمینه هایی همچون تولید رشته های لامپها، بوش های خود روانساز، متعلقات گیربکس اتومبیل، اتصالات الکتریکی، مواد ضد سایش قطعات توربین و آمالگم های دندانپزشکی اشاره شود. علاوه بر آن پودر فلزات در موارد و کاربردهایی چون صنایع رنگ سازی مدارهای چاپی، آردهای غنی شده مواد منفجره، الکترود های جوشکاری،  سوخت راکت ها، جوهر چاپ، باطری الکتریکی قابل شارژ، لحیم کاری و کاتالیزورها مورد استفاده قرار می گیرند.

متالورژی پودر در ابتدا فلزات معمول، همچون مس و آهن شروع شد ولی لانه استفاده  از عمل آن به فلزات غیر دیگر نیز سرایت کرد. کاربردهای جدید تری برای متالورژی پودر به دنبال داشت. بطوریکه از آغاز دهه 1940 بسیاری از قطعات فلزات غیر معمول از طریع این تکنولوژی تهیه شدند. در این گروه مواد می توان از فلزات دیر گداز مانند نایوبیم، تنگستن، مولیبدن، زیر کنیم، تیتانیم، رنیم و آلیاژهای آنها نام برد. همچنین تعدادی از مواد هسته ای و ترکیبات الکتریکی و مغناطسسی نیز با تکنیک های  متالورژی پودر تهیه شدند. هر چند موفقیت اولیه متالورژی پودر بیشتر مدیون مزایای اقتصادی آن است. ولی در سالهای اخیر ساخت قطعاتی که تولید آنها  با روشهای دیگر مشکل می باشد در گسترش این تکنولوژی  سهم چشمگیری داشته است. انتظار می رود که این عوامل در جهت بسط متالورژی پودر و ابداع کاربردهای آتی آن دست به دست هم داده و دست آودرهای تکنولوژیکی تازه ای را  به ارمغان آورند. تداوم رشد متالورژی پودر را میتوان به عوامل پنجگانه زیر وابسته دانست:

الف) تولید انبوه قطعات سازه ای دقیق و با کیفیت بالا که معمولاً‌بر بکارگیری آلیاژهای آهن مبتنی می باشند.

ب ) دستیابی به قطعاتی که فرایند تولید آنها مشکل بوده و باید کاملاً فشرده و دارای ریز ساختار یکنواخت ( همگن) باشند.

پ ) ساخت آلیاژهای مخصوص،‌عمدتاً مواد مرکب محتوی فازهای مختلف که اغلب برای شکل دهی نیاز به  بالا تولید می شوند.

ت) مواد غیر تعادلی از قبیل آلیاژهای آمورف و همچنین آلیاژ های ناپایدار.

ث ) ساخت قطعات پیچیده که شکل و یا ترکیب منحصر به فرد و عیر معمول دارند

متالورژی پودر روز به روز گسترش بیشتری یافته و بر میزان پودر تولیدی به طور پیوسته افزوده، بطوریکه پودر آهن حمل شده از آمریکا از سال 1960 تا 1978 میلادی به ده برابر افزایش یافته است. هر چند در سالهای اخیر آهنگ رشد این تکنولوژی چندان پیوسته نبوده، ولی مجموعه  شواهد دلالت بر گستردگی بیشتر آن، در مقایسه با روشهای سنتی قطعه سازی دارد. باز خوردهای دریافت شده از مهندسین طراح نشان می دهد که هر چه دانش ما در متالورژی پودر افزودن تر می شود، دامنه کاربرد این روش نیز گسترش بیشتری می یابد. اغلب دست آوردهای نوین این زمینه صنعتی بر قابلیت آن در ساخت،‌ مقرون به صرفه قطعات با شکل و ابعاد دقیق مبتنی است.


مقدمه

در قرن بیستم و در سالهای اخیر، تکنیک متالورژی پودر بطور جدی تر،‌ مورد توجه قرار گرفته و جای خود را به اندازه کافی در صنعت باز کرده است بطوری که در حال حاضر می توان آن را به عنوان یکی از تکنیک های جدید متالورژی به حساب آورد. البته قدمت تولید قطعات با پودر به بیش از پنج هزار سال پیش می رسد، درآن زمان کوره هایی که بتوانند حرارت لازم را برای ذوب فلزات ایجاد کند، وجود نداشتند. روش معمول، احیا سنگ معدن با ذغال چوب بود و محصولی که به دست می آمد نوعی فلز اسفنجی بود که در حالت گرم با چکش کاری امکان شکل دهی مطلوب داشت.

هم اکنون، ستونی آهنی با وزنی حدود شش تن در شهر دهلی وجود دارد که در هزار وششصد سال پیش با همین روش تهیه شده است . در اواخر قرن هیجدهم و لاستون

( wollaston ) کشف کرد که می توان پودر فلز پلاتین را که در طبیعت به صورت آزاد شناخته شده بود، پس از تراکم و حرارت دادن، درحالت گرم با چکش کاری شکل داد. ولاستون جزئیات روش خود را درسال 1829 منتشر کرد و اهمیت فاکتورهای نظیر اندازه دانه ها، متراکم کردن پودر با وزن مخصوص بالا و اکتیویته سطحی و غیره.. را توضیح داد.

همزمان با ولاستون وبطور جداگانه متالوریست بر جسته روسی پیومتر زابولفسکی

( pyotrsobolevsky ) در یال 1826، از این روش برای ساختن سکه ها و نشان ها از جنس پلاتین استفاده کرد. در نیمه دوم قرن نوزدهم، متخصصین متالورژی به روشهای روب فلزات با نقطه روب بالا دست یافتند و همین مسئله باعث شد که مجدداً  استفاده از متالورژی پودر محدود شود،‌ هر چند تقاضا برای تولید قطعاتی مانند تنگستن از طریق  متالورژی پودر فلز، تلف شده به مراتب کمتر از سایر روشهاست و حتی می توان گفت وجود ندارد. دراین مورد، بطوری که تجربه نشان می دهد،‌ هر یک کیلوگرم محصول ساخته شده باروش متالورژی پودر، معادل است با چند کیلو گرم محصول ساخته شده با سایر روشهای شکل دادن نظیر برش و تراشکاری،  چون در روشهایی نظیر تراشکاری مقادیر زیادی از فلزبه صورت براده در می آید که تقریباً غیر قابل استفاده است. علاوه بر آن یک کیلو گرم از مواد ساخته شده بوسیله روشهای متالورژی پودر می تواند کار ده ها کیلو گرم فولاد آلیاژی ابزار را انجام دهد.

3-1- فصل سوم:

تولید پودر به روش الکترولیتی :

تحت شرایط مناسب می توان پودر فلزات را بر روی کاتد سلول الکترولیز رسوب داد. پودر خالص فلزات تیتا نیوم، مس،آهن و برلیم نمونه هایی از پودرهای تولید شده با روش اخیر می باشد.

انحلال در سطح آند و ایجاد رسوب پودری در کاند انجام می گیرد. انتقال یونها در الکترولیت منجر به تولید شد پودری با درجه خلوص بالا در سطح کاتد می شود که پس از جمع آوری،‌ آسیاب و نهایتاً برای کاهش سختی کرنشی ایجاد شده  در آن تحت عمل آنیلینگ قرار می گیرد. نیروی محرکه تولید پودر در این روش ولتاژ خارجی اعمال شده بردو قطب الکترولیز بوده و جمع آوری پودر از سطح کاتد با نشستن سطح آن و خشک کردن رسوب حاصله عملی می شود. پودر تولید شده به روش الکترولیتی معمولاً شاخه ای و یا اسفنجی بوده و ویژگیهای آن تابع شرایط حمام درحین رسوب و همچنین عملیات بعدی انجام گرفته بر روی پودر می باشد.

بالا بودن دانسیته جریان خارجی،‌ کم بودن غلظت یونی در محلول الکترولیت و اسیدی بودن آن و همچنین افزایش مواد کلوئیدی به حمام به تولید پودر  اسفنجی کمک  می کند. دمای حمام در شرایط کار در حدود 60 درجه سانتیگراد بوده و از الکتولیت با گران و سیکوزیه بالا استفاده می شود. از بهم زدن الکترولیت نیز پرهیز می شود تا رسوب ایجاد شده بر سطح کاتد حتی الامکان باشد.

هر چند الکترولیز برای تولید پودرهای با درجه خلوص بالا روشی شناخته شده می باشد ولی انجام آن مشکلاتی را نیز به همراه دارد. ترکیب شیمیایی حمام الکترولیت بسیار حائز اهمیت بوده و ناخالصی های موجود در آن می تواند رسوب پودر بر سطح کاتد را با وقفه مواجه سازد. علاوه بر این روش مذکر تنها برای تولید پودرهای فلزی( غیر آلیاژی ) قابل استفاده می باشد. همچنین تمیز کردن و آماده سازی پودر تولید شده برای فرایند های بعدی می تواند هزینه تولید را به میزان زیادی افزایش دهد.


4-1- فصل چهار:

تولید پودر به روش پاشش

4-1-1- پاشش با گاز

بکارگیری هوا، ازت، هلیم و آرگون بعنوان سیالات متلاشی کننده جریان مذاب در تولید پودر فلزات و آلیاژها از کار آیی چشمگیری برخوردار می باشد. جریان فلز ( آلیاژ) مذاب در اثر برخورد با گاز منبسط شده ای که از یک افشانک خارج می گردد متلاشی شده و در مراحل بعدی به دانه های پودر کروی تبدیل می گردد. پاشش گازی برای تولید پودر سوپر آلیاژ ها و مواد پر آلیاژ روشی ایده آل و شناخته شده می باشد.

طرحهای گوناگون مورد استفاده تابعی از مکانیزم تغذیه فلز مذاب و پیچیدگی تجهیزات ذوب و جمع آوری پودر می باشد، ولی ویژگی مشترک همه این روشها انتقال انرژی از یک گاز سریعاً منبسط شونده به جریان مذاب و تبدیل آن به دانه های پودر است. افشاننده های با دمای کم دارای طرح افقی مطابق شکل11 می باشند. و گاز دارای سرعت بالا که از یک افشانک خارج می گردد فلز مذاب را به منطقه انبساط گاز می کشاند. سرعت زیاد گاز باعث تولید جریانی از قطرات ریز مذاب شده که در حین حرکت در محفظه جمع آوری پودر سرد و منجمد می گردند.

روش پاشش برای فلزات با نقطه ذوب بالا در محفظه بسته ای که با گاز خنثی پر شده انجام می گیرد تا از اکسید اسیدن دانه های پودر جلوگیری شود. اندازه محفظه ( تانک) پاشش باید به نحوی انتخاب شود که دانه های پودر پیش از برخورد به دیواره های آن بصورت جامد در آیند. در چنین سیستمهایی مذاب در کوره القایی تحت خلاء، تهیه و به افشانک ریخته می شود. دمای فوق ذوب تا حد قابل ملاحظخ ای بابد بجای افشانک مدور می توان از افشانکهای چند گانه که بصورت محیطی جریان مذاب را احاطه کرده اند، استفاده نمود. گاز پاشش مذاب باید از محفظه تولید پودر تخلیه شود تا از ایجاد فشار جلوگیری شود.

در حالیکه در سیستم پاشش افقی اینکار بوسیله فیلتر تعبیه شده در بدنه دستگاه، که نقش جمع آوری پودر را نیز بعهده دارد، انجام می شود. درتجهیزات پاشش قائم گاز بکار گیری سیلکون، تخلیه و در صورت نیاز بازیابی شده و دانه های ریز پودر نیز از آن جدا می شوند.

پاشش گازی را می توان تحت شرایط کاملاً خنثی انجام داد. از این تولید پودر های پر آلیاژ با ترکیب آلیاژی دست نخورده ( کنترل شده ) با این روش امکان پذیر می باشد. دانه های پودر حاصل از فرایند، کروی و توزیع دانه بندی آنها نسبتاً گسترده می باشد متغیرهای کنترل کننده فرایند نسبتاً زیاد و شامل نوع گاز، سرعت گاز، شکل افشانک و دمای گاز می باشد.


2-4-1- پاشش آبی

پاشش آب متدوالترین فرایند برای تولید پودر فلزات و آلیاژ های با نقطه ذوب پایینتر از 1600 درجه سانتیگراد می باشد. جهت دهی آب به سمت مسیر مذاب را می توان با استفاده از افشانک حلقوی، چند تایی و یا منفرد عملی نمود. این فرایند مشابه پاشش گازی می باشد. با این تفاوت که سرعت انجماد در این مورد بیشتر و ویژگیهای عامل متلاشی کننده مذاب نیز با حالت پیشین متفاوت می باشد.

در پاشش آبی شکل دانه های پودر ، به علت انجماد سریعتر در مقایسه با روش گازی، نامنظم تر بوده و بعلاوه سطح دانه ها ناصاف تر و اکسید اسیون آنها نیز بیشتر است. با توجخ به انجماد نسبتاً سریع دانه ها کنترل شکل آنها در صورتی امکان پذیر خواهد بود که دمای فوق ذوب در حد قابل ملاحظه ای بالا شد.

3-4-1-پاشش گریز از مرکز

نیاز به کنترل اندازه دانه های پودر و همچنین اشکالات موجود در تولید پودر فلزات فعال منجر به توسعه و بکارگیری این روش پاشش شده است. در افشانک مختلفی که بر مبنای اعمال نیروی گریز از مرکز بر مذاب بنا شده اند، نیرو باعث پرتاب قطرات مذاب و انجماد آنها بصورت پودر می گردد. یکی از نمونه های بکار گیری این روش، روش الکترود چرخان است که در تولید پودر فلزات  فعال مانند زیر کنیم، وم همچنین سوپر آلیاژ ها بکار گرفته می شود،‌

1-2 : ریخته گری دوغابی یا Slip Casting

از این روش بطور وسیع برای سرامیکها و در مقیاس کمتر برای فلزات استفاده می شود. مواد ذیل برای ریخته گری لازم است:

1- پودر فلز یا سرامیک

2- مایع برای معلق نگهداشتن ذرات ( آب الکل)

3- مواد افزودنی برای جلو گیری از ته نشینی ذرات و چسبنده ها

دراین روش معمولاً‌ ذرات از 5 میکرو است ( از ذرات بزرگتر از 20 میکرومتر به علت سرعت ته نشین زیاد به ندرت استفاده می شود) با  کمک افزودنی ها از ته نشینی ذرات بطور سریع جلو گیری بعمل می آید و عمل  فشرده شدن در ریخته گری دوغابی یکنواخت می شود. مواد پس از آماده شدن در قالبی که از مواد جذب کننده مایع ( مثل پلاستر پاریس ) ساخته شده است رسخته می شود، معمولاً چندین ساعت وقت لازم است تا مایع از خلل و فرج مویی (‌ Capillary ) شکل قالب خارج شود و مواد متراکم شده از قالب بیرون آید.

قبل از  زنیترتیگ قطعه متراکم شده باید خشک شود تا رطوبت بطور کامل از آن خارج و سپس زینتر شود. با این روش قطعات با تخلخل کم و یا زیاد می توان تولید کرد اما وزن مخصوص قطعه متراکم شده در این روش پایین است و در زنیترتیگ انقباض زیاد تری لازم است تا به وزن مخصوص بالاتر برسد.


فهرست مطالب

 

پیشگفتار ۵
مقدمه ۸
۱-۱- روشهای مکانیکی تولید پودر ۱۰
۱-۱-۱- روش ماشین کاری ۱۰
۲-۱-۱- روش خرد کردن ۱۱
۳-۱-۱- روش آسیاب ۱۲
۴-۱-۱- روش ساچمه ای کردن ۱۳
۵-۱-۱- روشدانه بندی باگرانوله کردن ۱۳
۶-۱-۱- روش اتمایز کردن ۱۳
۷-۱-۱- تولید پودر با روش مانسمن ۱۵
تولید پودر به روش شیمیایی ۱۷
۱-۲-۱ روش احیاء ۱۷
۲-۲-۱ روش رسوب دهی ( ته نشین سازی از مایع) ۱۸
۳-۲-۱- روش تجزیه گرمایی ۱۹
۴-۲-۱- روش رسوب از فاز گازی ۲۰
۵-۲-۱- روش خوردگی مرزدانه ها ۲۱
تولید پودر به روش الکترولیتی ۲۴
تولید پودر به روش پاشش ۲۶
۴-۱-۱- پاشش با گاز ۲۶
۲-۴-۱- پاشش آبی ۲۸
۳-۴-۱-پاشش گریز از مرکز ۲۸
۱-۲ : ریخته گری دوغابی یا Slip Casting 29
تراکم با سیستم چند محوری ۳۳
تراکم در قالبها ۳۴
۲-۲-۲- متراکم کردن با لرزاندن ( ویبره ای ) ۳۴
۳-۲-۲- متراکم کردن سیکلی ( نیمه مداوم) ۳۶
۴-۲-۲- متراکم کردن به روش ایزواستاتیک ۳۷
۵-۲-۲- متراکم کردن با نورد ۳۸
۲-۴ : تزریق در قالب یا injection molding 42
مواد آلی افزودنی ۴۳
مخلوط کردن ذرات پودر با مواد آلی ۴۵
نحوه تزریق در قالب ۴۵
محدودیتهای روش تزریق ۴۶
کاربرد کاربید سمانته شده ۴۹
II- الماس مصنوعی ۴۹
تولید ابزار از الماس مصنوعی ۵۰
III- تولید یاقاقانهای خود روغن کار ۵۱
آنالیز شیمیایی یاتاقانهای خود روغن کار ۵۳
یاتاقانهای برنزی زینتر شده ۵۳
iv- تولید پودر برای روکش الکترودها ۵۵
روکش الکترودها ۵۶
کنترل خواص سرباره ۵۷
کیتفیت رسوب جوش ۵۷
قابلیت چسبندگی با اکستروژن ۵۸

 

دانلود بررسی متالورژی پودر

دانلود بررسی مشخصات ریخته گری و ذوب

بررسی مشخصات ریخته گری و ذوب

مقاله بررسی مشخصات ریخته گری و ذوب در 16 صفحه ورد قابل ویرایش

دانلود بررسی مشخصات ریخته گری و ذوب

تحقیق بررسی مشخصات ریخته گری و ذوب
پروژه بررسی مشخصات ریخته گری و ذوب
مقاله بررسی مشخصات ریخته گری و ذوب
دانلود تحقیق بررسی مشخصات ریخته گری و ذوب
پروژه
پژوهش
مقاله
جزوه
تحقیق
دانلود پروژه
دانلود پژوهش
دانلود مقاله
دانلود جزوه
دانلود تحقیق
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 18 کیلو بایت
تعداد صفحات فایل 16

بررسی مشخصات ریخته گری و ذوب


مشخصات ریخته گری و ذوب

آلومینیم و آلیاژ های آن به دلیل نقطه ذوب کم و برخورداری از سیالیت بالنسبه خوب و همچنین گسترش خواص مکانیکی و فیزیکی در اثر آلیاژ سازی و قبول پدیده های عملیات حرارتی و عملیات مکانیکی ، در صنایع امروز از اهمیت زیادی برخور دارند و روز به روز موارد مصرف این آلیاژ ها توسعه می یابد . عناصر مختلف مانند سیلیسیم ، منیزیم و مس در خواص ریخته گری و مکانیکی این عنصر شدیداً تأثیر می گذارند و یک رشته آلیاژ های صنعتی پدید می آورند که از مقاوت مکانیکی ، مقاوت به خورندگی و قابلیت ماشین کاری بسیار مطلوب برخوردارند . قابلیت جذب گاز و فعل و انفعالات شیمیایی در حالت مذاب از اهم مطالبی است که در ذوب و ریخته گری آلومینیم مورد بحث قرار می گیرد .

 تقسیم بندی آلیاژ ها

آلیاژ های آلومینیم در اولین مرحله به دو دسته تقسیم می گردند :

الف ) آلیاژ های نوردی (Wrought Alloys) که قابلیت پزیرش انواع و اقسام کارهای مکانیکی ( نورد ، اکستروژن و فلز گری ) را دارند .

ب ) آلیاژ های ریختگی (Casting   Alloys) که در شکل ریزی و ریخته گری های آلومینیم با گسترش بسیار مورد استفاده اند . آلیاژ های نوردی که در مباحث شکل دادن فلزات مورد مطالعه قرار می گیرند از طریق یکی از روش های شمش ریزی (مداوم ، نیمه مداوم ، منفرد ) تهیه             می گردند و پس از قبول عملیات حرارتی لازم ، تحت تاثیر یکی از زوش های عملیات مکانیکی به شکل نهایی در می آیند .

آلیاژ سازها (Hardeners)

این عناصر که به نام های Temper  Alloys و Master  Alloysنیز نامیده می شوند به مقدار زیادی در صنایع ریخته گری آلومینیم به کار           می روند ، زیرا آلومینیم با نقطه ذوب کم اغلب قادر به ذوب و پذیرش مستقیم عناصر با نقطه ذوب بالا نیست (مس 1083 درجه ، منگنز 1244 درجه ، نیکل 1455 درجه ، سیلیسیم 1415 درجه ، آهن 1539 درجه و تیتانیم 1660درجه سانتی گراد ) . همچنین عناصر دیگری که نقطه ذوب بالا ندارند ، دارای فشار بخار وشدت تصعید و اکسیداسیون می باشند که در صورت استفاده مستقیم درصد اتلاف این عناصر شدیدا افزایش می یابد          ( منیزیم ، روی ) . ترکیب شیمیایی و نقطه ذوب بعضی از آلیاژ ها که در صنایع آلومینیم به کار می رود .مشخصات متالوژیکی آلیاژ ها در فصل جداگانه ای مورد مطالعه قرار خواهد گرفت . تهیه آلیاژ ساز ها معمولا در کار گاههای ریخته گری نیز انجام می گیرد در این مواقع اغلب روش های زیر مورد استفاده است .

معمولا قطعات عنصر دیر ذوب را ریز نموده و در فویل های الومینیمی پیچیده و یا در شناور های گرافیتی قرار داده ودر داخل مذاب الومینیم (800 درجه تا 850 درجه تحت فلاکس )فرو می برند و سپس آن را به هم میزنند.

احیاء کننده ها

اکسید آلومینیم به سهوات توسط عناصر دیگر احیاء می شود و فقط عناصر محدودی مانند کلسیم ، منیزیم، لیتم و برلیم قادر به احیاء آلومینیم می باشند . ولی اکسید های کلسیم و منیزیم به سرعت با اکسید آلومینیم ترکیب می شده و اکسید های مضاعف (اسپینل ) تشکیل می دهند و از این رو برای خروج اکسیدهای آلومینیم اثرات منفی ندارد . در مقابل برلیم بریا کلیه آلیاژ های آلومینیم و به خصوص آلومینیم ، منیزیم توصیه شده است .

اکسید برلیم علاوه برقابلیت احیاء اکسید های آلومینیم و منیزیم ، می تواند اکسید فیلم غیر متخلخل در سطح مذاب تشکیل دهد و مانع از اکسیده شدن بیشتر مذاب شود .

با توجه به این که فاکتور تخلخل BeO برابر 4 می باشد در حالی که این فاکتور برای نزدیک 2 و برای MgO8/0است ،چگونگی حفاظت سطح مذاب توسط اکسید فیلم مشخص می گردد .

برلیم در شمش ها و قطعات آمیژن با 5/1% برلیم و یا به صورت ترکیب  به مذاب اضافه می گردد .

لیتیم نیز که به صورت لیتیم فلزی و یا فلوئور لیتیم Fli به مذاب آلومینیم افزوده می شود ، در تقلیل مقدار اکسید های آلومینیم و منیزیم تاثیر بسیاری دارد . ول مشخصات کلی آن از بلریم نا مطلوب تر است ، زیرا قادر به تشکیل اکسید غیر متخلخل است و محافظت فلز را مانند برلیم انجام         نمی دهد و از طرف دیگر به دلیل نقطه ذوب پایین ممکن است در مذاب حل شود  

در خاتمه این مبحث لازم به توضیح است که عناصری قادر به احیاء و استفاده در صنایع ذوب آلومینیم هستند که مشخصات زیر را داشته باشند :

1ـ نقطه ذوب و تبخیر بالا

2ـ وزن اتمی کم

3ـ وزن مخصوص کم

4ـ قطر اتمی کوچک

و در بین عناصر ، برلیم مشخصات فوق را به طور کامل دارد و از این رو استفاده از آن در صنایع آلومینیم بیش از عناصر دیگر به عمل می آید .

فلاکس های گازی

اکسید ها و مواد غیر فلزی شناور در مذاب می تواند با فلاکس های گازی فعال مانند و یا ترکیبات قابل تبخیر مانند از مذاب خارج می شوند . گرچه عناصر فوق برای گاز زدایی به کار می روند ولی در جریان خروج از مذاب قادرنند بسیاری از مواد غیر فلزی و آخال ها را به طریق مکانیکی به همراه  خود به سطح مذاب انتقال دهند .بهر صورت عمل دگازین با کلرور ها وترکیبات کار تاثیربسیار زیادی در خارج کردن مواد ناخواسته از آلومینیم مذاب دارند ولی بایستی توجه کرد که استفاده از این مواد اغلب با خورندگی بوته و ایجاد گاز سمی روبرو می باشد . فلاکس های حاوی کلر باعث اتلاف شدید منیزیم در مذاب می گردد و از این رو در مورد آلیاژ های آلومینیم – منیزیم بیشتر از کلرور منیزیم استفاده می کنند وبه صورت مایع عمل فلاکسینگ را انجام می دهد .

گاز های بی اثر مانند ازت و آرگون تاثیر کمی در تصفیه مذاب از مواد نا خواسته دارند و از این رو عمل فلاکس های کلروره بیشتر در ایجاد ترکیب می باشد که قادر است در فصل مشترک اکسیدها و مواد مذاب قرار گرفته و همراه خود  ، آنها را استخراج می سازد .

انواع و اقسام کلر ور ها و فلاکس های قابل تبخیر در ذوب آلومینیم به کار می روند که مهمترین آنها عبارتند از :

استفاده از فلاکس های مختلف بایستی متناسب با ترکیب شیمیایی آلیاژ باشد و در غیر این صورت نا خالصی های فلزی در آلیاژ افزایش می یابند :

هگزاکلرواتان ، جامد می باشد ولی در درجه حرارت مذاب تجزیه شده و با آلیاژ ترکیب می شود در این حالت یکی و یا تمام فعل و انفعالات زیر امکان پذیر می باشد .

تصفیه : فیلتر کردن

به دلایل اشکالات متالوژیکی ناشی از مصرف فلاکس ها ، سیستم فیلتر کردن در صنایع الومینیم توسعه روز افزون یافته است و این امر با استفاده از مواد متخلخل در سیستم های راهگاهی و یا در مخازن نگهداری مذاب و یا در سیستم های فیلتر مجزا انجام می گیرد که هر یک در نوع خود از مزایا و محدودیت هایی بر خوردار است .

قسمت سختی سنجی :

برای سنجش میزان سختی قطعات تولید شده از روش برینل استفاده می شود در این روش با اعمال نیرویی بر روی قطعه به وسیله ساچمه ای به قطر 10 میلیمتر میزان سختی جسم را اندازه می گیرد گلوله در قطعه فرو می رود تا زمانی که جسم زیر گلوله مقاومت کند اگر جسم سخت باشد از ماده ای به نام کاربید تنکستن (wc) استفاده می شود زمان اعمال نیرو 30 ثانیه  می باشد اگر ماده نرم باشد 500 کیلوگرم بدان نیرو وارد می شود بعد از اعمال نیرو به وسیله میکروسکوپ چشمی قطر اثر نیرو را دیده و اندازه گیری
می کنند .

در این قسمت برای وارد کردن نیرو به قطعه از وزن 750 کیلوگرم استفاده می کنند نرمال سختی قطعه بین 100 الی 120 برینل می باشند بعد از این مرحله قطعه را با میکروسکوپ مجهز بازیننی می کننند تا ساختار کریستالی قطعه مشخص شود ساختار باید به صورت Modifire یا اصلاح شده باشد هنگام دیدن ساختار قطعه در زیر میکروسکوپ ذرات سیلیسم به صورت پیوسته و توری شکل در زمینه AL قرار می گیرند .

وجود ساختار سوزنی  سر سیلندر باعث می شوند که قطعه هنگام شوک حرارتی یا حتی شوک مکانیکی ترک بخورد بنابراین اگر قطعاتی وجود داشته باشد که دارای ساختار سوزنی باشند را دوباره به قسمت ذوب برگشت داده و دوباره اصلاح ساختاری روی آن صورت می گیرد برای اصلاح ساختار از NA  و یا از قرص  نئوکلانت استفاده می شود .

دانلود بررسی مشخصات ریخته گری و ذوب

دانلود بررسی نقش فلز آلومینیوم در صنعت

بررسی نقش فلز آلومینیوم در صنعت

مقاله بررسی نقش فلز آلومینیوم در صنعت در 20 صفحه ورد قابل ویرایش 2500

دانلود بررسی نقش فلز آلومینیوم در صنعت

تحقیق بررسی نقش فلز آلومینیوم در صنعت
پروژه بررسی نقش فلز آلومینیوم در صنعت
مقاله بررسی نقش فلز آلومینیوم در صنعت
دانلود تحقیق بررسی نقش فلز آلومینیوم در صنعت
پروژه
پژوهش
مقاله
جزوه
تحقیق
دانلود پروژه
دانلود پژوهش
دانلود مقاله
دانلود جزوه
دانلود تحقیق
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 17 کیلو بایت
تعداد صفحات فایل 20

 بررسی نقش فلز آلومینیوم در صنعت

 

بیان مساله

فلز آلومینیوم بادارا بودن مزایای متنوع جایگاه ویژه‌ای برای خود در صنایع پیشرفته روز ایجاد کرده است. ساختار آلیاژی مقاوم آلومینیوم اعتماد و اطمینان در استفاده از‌آن را در صنایع هواپیما سازی دوچندان نموده است. قوانین سخت کاهش آلایندگی خودروها و نیاز به مصرف پایین سوخت آنها، خودروسازان را ناگزیر به استفاده از این فلز گرانبها در محصولات خود کرده است. صنایع حمل  و نقل ریلی، الکتریکی، تجهیزات مخابراتی احداث ساختان، ظروف غذا و غیره همگی به نوعی سعی در بهره‌مند شدن از مزایای فلزآلومینیوم دارند. از این رو استراتژی جهانی در ظرفیتهای تولید متناسب با نیزا بازار مصرف بوده است.

بانگرش به تحولات جهانی مانند افزایش جعیت، آلودگی فزاینده محیط زیست، ناخوشایند به نظر رسیدن وشع اقتصادی جهان و تأثیر و تاثربازهم بیشتر کشورها، آنچه در مورد اکثر صنایع مطلوب به نظر می‌رسد، پرهیزاز آلودگی محیط زیست، پایین بودن قیمت مصرف، پاسخ‌گویی به سلیقه پیچیده و قابلیت دسترسی سریع است، اهمیت این فلز با توجه به موارد فوق‌الذکر درجهان امروز بیشتر مشخص می‌شود.

سه شرکت عمده تولید کننده آلومینیوم در جهان که تقریبا یک سوم تولید جهان را در اختیار دارند به نامهای Alcoa، Alcan، Rusky می‌‌باشد.

Alcoa با تولید 3600 هزارتن در سال 7/14% از تولید را در اختیار دارد. Rusky با توجه جهان را در اختیار دارد، در حال حاضر این سه گروه تولیدی جهان براساس منابع و سودآوری میزان تولی خود را کنترل میکنند.

در حوزه خلیج‌فارس دو کشور امارات متحهده عربی و بحرین با مجموع تولید یک میلیون و 50هزارتون تقریباً 5% کل تولید جهان را به خود اختصاص داده‌اند. موفقیت گذشته شرکتهای Alba بحرین و Dubal  امارات متحده عربی و طرحهای توسعه‌ای این صنعت در کشورهای مذکور، کشورهای دیگر این منطقه را تشویق به سرمایه‌گذاری در این میدان صنعتی کرده است.

امارات متحده عربی درحالی حاضر 33/2% تولید جهانی را در اختیار دارد و درحال بررسی افزایش سهم خود به میزان دوبرابر مقدار فعلی یعنی رساندن ظرفیت تولیدی به 936 هزارتن در سال می‌باشد. همینطور آلومینیوم بحرین که سهم آن از تولید جهان در حال حاضر 18/2% می‌باشد، افزایش ظرفیت خود از 500 هزارتن فعلی به 750 هزارتن در سال 2004 و یک میلیون تن در سال 2008 میلادی را دربرنامه دارد.

تمام موارد فوق اهمیت روزافزون جهانی در دستیابی و توسعه استراتژیک این فلز گرانبها را نشان می‌دهد. کشور ایران بادارا بودن معادن بوکسیتی آلومینا، منابع گازی فراوان به منظور تولید برق ارزان قیمت و نیروی کار نسبتا ارزان‌، تولید رقابتی فلز آلومینویم را داراست. اهمیت این فلز در ایجاد اشتغال مستقیم و توسعه صنایع زیردستی مرتبط برای کشوری با نیروی جوان جویای کار و تحصیل کرده امری اجتناب ناپذیر است.

مزیتهای نسبی ایران در توسعه صنعت آلومینیوم را می‌توان در عناوین زیر خلاصه نمود:

1-      انرژی ارزان و قابل دسترس

2-       نیروی کار ماهر، ارزان و قابل دسترسی

3-       وجود بازار مصرف داخلی

4-       ظرفیت خالی صنایع پایین دستی

5-       هماهنگی با تقسیم‌کار جهانی بازار

در این صنعت در ایران تنها دو تولید کننده به نامهای ایرالکو و المهدی فعالیت می‌کنند که سهم هر کدام از‌آنها در تولید داخلی به صورت زیر است:

-         ایرالکو باتولید 120 هزارتن در سال (67%)

-     المهدی با ظرفیت اسمی 110 هزار تن و تولید فعلی حدود 55هزارتن درسال (33%)در اسل 1972 میلادی ایران با تولید 45 هزارتن، 30درصد تولید منطقه را در اختیار داشت. سهم ایران از تولید آلومینیوم منطقه در سال 1993 به 2/16  درصد کاهش یافت . (120 هزارتن از 740 هزارتن تولید منطقه)

سهم ایران در تولید منطقه در سال 2002 بازهم کمتر و به 2/13 درصد رسیده است. (160 هزارتن از 1210 هزارتن) رسیدن به موقعیت برتر در تولید آلومینیوم در خلیج‌فارس نیازمند تلاش بیشتری است.

با توجه به اهمیت این صنعت واین فلز در جهان در این پایان نامه طرح آلومینیوم المهدی به عنوان مطالعه موردی انتخاب شده است. مجتمع آلومینیوم المهدی در سال 1369 تاسسیس در سال 1376 با 6 دیگ (3% ظرفیت اسمی) مورد بهره‌برداری قرار گرفته است. هدف از تاسیس موسسه ساخت کارخانه تولید شمش آلومینیوم با ظرفیت سالانه 220 هزارتن قابل توسعه به 330 هزارتن در سه فاز بوده است.

پایان نامه با بکارگیری قیمتهای بازار و همچنین قیمتهای محاسباتی، ارزیابی مالی و اقتصادی باری طرح انتخابی در این انجام می‌شود و نتایج مورد بررسی قرار می‌گیرد.

واقعیت در مورد تاکید در این پایان نامه این است که نشان دهد نرخ بازدهی داخلی (IRR) طرحها (طرحهایی که متولی انجام آن دولت است) در بسیاری از مواقع غیر واقعی است و نظام قیمتهای بازار به دلایلی که در پایان نامه مطرح خواهد شد پاسخگوی نیاز ارزشیابی طرحهای صنعتی نمی‌باشد و می‌ بایستی تحریف‌های موجود در بازار رفع شود.

1-      ارزش افزوده طرح

1-1)        محاسبات عددی مربوط به ارزش افزوده

1-2)         ساختار گرافیکی ارزش افزوده

1-3)         ساختار گرافیکی ارزش افزوده ملی

2-             اثر مبادلات ارز طرح برتر از پرداختهای مالی

3-             اثر اجرای طرح به سطح اشتغال ملی

4-1) صورت منافع و مخارج اقتصادی طرح

4-2) ارزش خالص کنونی طرح (اقتصادی) و نرخ بازده داخلی اقتصادی طرح

4-3) ساختار گرافیکی ارزش فعلی اقتصادی طرح

در زمینه موارد مالی نرم افزار کامفار موارد زیر را بررسی می‌‌کند:

1)     ضابطه دوره برگشت سرمایه‌

2)      ضابطه نرخ بازده ساده سرمایه‌گذاری:

الف) کل حقوق / سود خالص =  نرم بازده‌کل حقوق (حقوق صاحبان سهام + مجموع بدهی‌‌ها)

ب) حقوق صاحبان سهام / سود خالص = نرخ بازده خالص ثروت (حقوق صاحبان سهام)

3)     ضابطه ارزش خالص کنونی طرح

4)      ضابطه شاخص سودآوری

5)      ضابطه نرخ بازده سرمایه‌گذاری (نرخ بازده داخلی)

لازم به ذکر است به دلیل اینکه جریانات نقدی بعضی از پروه‌ها دارای الگوی خاصی می‌باشند، به عبارت دیگر گردش نقدی نخست منفی، سپس مثبت و بعد از‌ آن منفی و در پی آن مثبت می‌شود و این جریان خاص بدین شکل ادامه یافته و از جریان یکباره منفی و تا پایان مثبت (در حالت عادی) پیروی نمی‌کند طرح با بیش از یک نرخ بازده داخلی روبروست. در چنین حالتی چندین روش جلوگیری از محاسبه بیش از یک نرخ بازده داخلی پیشنهاد شده که بکارگیری آن مستلزم زمان زیادی است. نرم افزار کامفار بطور خودکار از بروز چنین مشکلاتی جلوگیری کرده و جریانات نقدی پروژه را به حالت عادی برگردانده و نرخ بازده داخلی طرح را بصورت واحد محاسبه می‌کند.

همانطور که ملاحظه می‌گردد به دلیل اهمیت بسیار زیاد مساله  ارزش زمانی پول، تنزیل وجود نقد تنها راه حلی است که این مساله را حل می‌کند. نکته مهمی که تنزیل وجود نقد با آن روبروست مشکل بودن محاسبات است علل خصوص زمانیکه جریانات مقداری پیچیده باشد، یکی از محاسن کامفار حل این مشکلات است.

این نرم‌افزار به سادگی و بدون هیچ مشکل خاصی، ارزش فعلی هرگونه جریان نقدی را محاسبه کرده و سایر معیارهایی که براساس این ارزشهای فعلی محاسبه می‌شوند از قبیل ارزش خالص کنونی طرح، نرخ بازده داخلی را به راحتی محاسبه و ارایه می‌نماید. علاوه بر این کامفار با تحلیل حساسیتی که در رابطه با معیارها انجام می‌دهد به بسیاری از روشهای موجود از ارجحیت دارد و امکان تحلیل بیشتری به تحلیلگر طرح می‌دهد.

در نرم افزار CAMFAR توجه ویژه‌ای به مساله تحلیل حساسیت شده است و کاربر در هرزمینه‌ای میتواند حساسیت نتایج تحلیل خود را نسبت به تغییرات ایجاد شده در هریک از اقلامی در تحلیلها وجود دارد مورد ارزیابی قرار دهد. تغییرات ایجاد شده در هر یک از اقلامیدر تحلیلها وجود دارد مورد ارزیابی قرار دهد. تغییرات ایجاد شده در سرمایه‌ در گردش هم از جمله اطلاعات مفیدی است  که کامفار در اختیار کاربرد می‌گذارد. اضافه می‌نماید که توانایی نرم‌افزار مورد بحث در زمینه مالی بسیار بالاست.

توجه به این نکته ضروری است که جهت تحلیل اتقاصدی یک طرح، ارزش خالص کنونی اقتصادی و برخ بازده داخلی اقتصادی تنها معیراهایی نیستند که می‌توانند مورد استفاده قرار گیرند، بلکه نسبت‌ها و مقادیری نیز وجود دارند که می‌توئانند در این زمینه مورد استفاده قرار گیرند. حسن نرم‌افزار مورد بحث آن است که علاوه بر ارزش خالص کنونی اقتصادی طرح و نرح بازده داخلی اقتصادی اطلاعات مفید دیگر نیز ارایه می‌د‌هد که در تحلیلهای اقتصادی بسیار مثمر ثمر خواهد بود. با استفاده از این اطلاعات پردازش شده علاوه بر آنکه ترجیه کلامی در زمینه حفظ و تامین منابع ملی از ناحیه اجرای طرح، اعتبار ارقامی جهت پشتیبانی از این توجیهات ارایه می‌گردد.

نرم افزار کامفار اطلاعاتی که جهت انجام تحلیل مالی به کامپیوتر وارد شده است را به عنوان مبنا قرار داده و با استفاده از ضرایب تبدیل مناسب که کاربر به سیستم وارد می‌کند، قیمتها را به قیمت اقتصادی تبدیل کرده و آنها را مورد تحلیل قرار می‌دهد. در ضمن هنگام ورود اطلاعات این نرم‌افزار موارد مربوط به قابل مبادله بودن و یا غیر قابل مبادله بودن واردات و صادرات و اطلاعات مشابه را درخواست کرده تا در صورت نیاز مورد استفاده قرار دهد. علاوه براین ممکن است بسیاری از اطلاعات مورد نیاز برای تحلیل مالی در صورت لزوم در تحلیل اقتصادی مورد استفاده قرار گیرد. از جمله دیگر، نرخ تنزیل اقتصادی است که معمولا با نرخ تنزیلی که جهت تحلیلهای مالی مورد استفاده قرار می‌گیرد، متفاوت است.

 

فهرست مطالب

 

بیان مساله ۴
ضرورت و اهداف تحقیق ۷
سوابق مربوطه ۹
منابع و مشکلات موجود ۱۹
تعاریف و اصطلاحات تخصصی ۲۰

 

 

 

دانلود بررسی نقش فلز آلومینیوم در صنعت